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PREFACE TO SECOND EDITION.

The following remarks appeared in the Preface to the First Edition

of this book :
—"This work aims at the presentation of two leading

features in the study and application of the higher mathematics.

In the first place, the development of the rationale of the subject

is based on essentially concrete conceptions, and no appeal is made

to what may be termed rational imagination extending beyond the

limits of man's actual physical and physiological experience. Thus

no use is anywhere made of series of infinite numbers of things

or of infinitely small quantities. The author believes that the

logical development is both sound and complete without reference

to these ideas.

"In the second place, a set of Eleven Classified Tables of

Integrals and Methods of Integration has been arranged in such

manner as seemed best adapted to facilitate rapid reference, and

thus relieve the mind engaged in practical mathematical work of

the burden of memorising a great mass of formulas.

" Critics who are schoolmen of the pure orthodox mathematical

faith may find it hard to reconcile the ideas that have with them

become innate, with some of the methods, and possibly some of

the phraseology, here adopted. "We only ask them to remember

that there is arising a rapidly increasing army of men eagerly

engaged in the development of physical research and in the

industrial applications of scientific results, with the occasional

help of mathematical weapons, whose mental faculties have been

wholly trained by continuous contact with the hard facts of

sentient experience, and who find great difficulty in giving faith
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to any doctrine which lays its hasis outside the limits of their

experiential knowledge."

Experience in the use of the book since its first publication has

confirmed the author in his belief that the basis upon which its

treatment of the Calculus is built is 'sound, rational, logical, and

that its form affords an easy and rapid method of acquiring power

to apply, correctly and safely, the higher mathematics to technical

problems. The method is good for technicians and physicists

because it is easy and rapid. Ease and rapidity would Tae funda-

mentally damning faults if it were illogical, or if it did not grow

from the roots of the realities of the subject-matter. If it were

illogical, it would be destructive of the intellectual training of the

student. No illogicality has been discovered inthe course of a

narrow criticism undertaken during the revision for this second

edition. If it be throughout correctly logical, the swifter the

habit of logical thinking to which the student is trained, the better

for his intellectual growth. But the special virtue of the method

is that this intellectual growth in mathematical power is from

beginning to end fed by contemplation of the mechanical and

physical facts the reality and truth of which are already parts of

his familiar mental consciousness ; his primary knowledge of which

is, indeed, often vague and uncritical, and which he now learns to

analyse into strictly definite ideas. If this habit of correlating

mathematical thinking with external observation become a con-

firmed one, then his mental activity, both in logical analysis and

in observation of external facts, must automatically develop con-

tinuously and permanently after his formal study of mathematics

has ceased. It is only by virtue of this habit that mathematical

knowledge becomes of use in physics and technical engineering.

The author has no fault to find with the older methods of study

of transcendental mathematics, provided always that they be

followed only by the select few who by temperament and choice

are destined to make pure mathematics their one and only field of

lifelong activity. This special kind of activity may be useful to

the progress of humanity, and, although the methods are old, they

develop year by year in the schools in new directions and arrive

at new results. But it is only a very few specially constituted

minds which are adapted to pursue these studies successfully.
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What needs to be recognised is that it is bad training for the

many not so constituted, and—what is of the most urgent impor-

tance—that mathematicians of this stamp are unsuited to be, and

indeed incapable of being, teachers of technical mathematics.

In the revision for this new edition the work has been very

carefully searched for errors. Those that have been discovered,

chiefly in the cross-references between Parts I. and II., have been

rectified. It is hoped that the volume is now practically free

of error.

Considerable additions have been made, mostly in the form of

Appendices. These deal for the most part with new applications,

the original work of the author, to specially important technical

problems, and particularly to the problems of economy in con-

struction. They include, also, additions to Part II. in the

Eeference Tables of Integrals. In the course of new applications

to technical work, general forms of integration which are either

new or whose frequent practical utility is novel, demand a place

in such Reference Tables. Both in the development of Electrical

Engineering and in the stricter application of scientific method to

Mechanical Design, this process of development is almost con-

tinuous and inevitable.

ROBERT H. SMITH.

1908.





TABLE OF CONTEIfTS.

PAET I.

CHAPTER I.—INTRODUCTORY.

1. Integration more useful than
Differentiation, . . 1

2. Method of the Schools, . 1

3. Rational Method, . , 1

4. Active Interest in the Study, 2

5. Object of present Treatise, . 2

6. Clumsiness ofCommonModes
of Engineering Analysis,

7. Graphic Method, .

8. Illustrations,

9. Classified List of Integrals,

10. Scope of Part I., .

CHAPTER II.—GENERAL IDEAS AND PRINCIPLES,
ALGEBRAIC AND GRAPHIC SYMBOLISM.

X dependent on x, . ,11
Nature of Derived Functions, 11
Variation of a Function, . 12
Scales for Graphic Symbol-

ism, . . . .12
Ratios in Graphic Delinea-

tions, . . . .12
Differential Coefficient,

a;-6radient, or X', . . 14
Scale of X', . . . . 14

Sign of X' 15
Snbtangent and Subnormal, . 16
Scale of Diagram Areas, . 17
Table of Scales, ... 17

Increments, . . . .18
Increment on Infinite Gra-

dient 18
Integration, . . .19
Increment Symbols, . . 19
Integration Symbols ; Limits

of Integration, . . 19
Linear Graphic Diagrams of

Integration, . . .21
The Increment deduced from

the Average Gradient, . 22

11.



CONTENTS.

CHAPTER II.—continued.

48.

50.

51.

52.

S3.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

70.

71.

72.

73.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Area Graphic Diagram of In
tegration,

Oiminisbing Error,

Integration through "In
finite " Gradient,

Change of Form of Integral,

Definite and Indefinite IntC'

gration, .

Integration Constant,

PAGE

22
22

23
24

24
24

PAGE
54, 55. Meaning of Integration

Constant, . . .25
56. Extension of Meaning of In-

tegration, . . .27
57. Integration the Inverse of

Differentiation, . . 27

58. Usual Method of finding New
Integrals, . . .27

CHAPTER III.—EASY AND FAMILIAR EXAMPLES OF
INTEGRATION AND DIFFERENTIATION.

Circular Sector, .

Constant Gradient,

Area of Expanding Circle, .

Rectangular Area,

Triangular Area,

First and Second Powers of

Variable,

Integral Momentum, .

Integral Kinetic Energy,
Motion Integrated from

Velocity and Time, .

Motion from Acceleration

and Time,
Bending Moments,
Volume of Sphere,
Volume ofExpanding Sphere,

Volume of Expanding Pyra-

mid,
Stress Bending Moment on

Beam, .... 36

74, Angle-Gradients of Sine

and Cosine and Integra-

tion of Sine and Co-
sine, ....

75. Integration through 90°,

76. Spherical Surface,

77. Spherical Surface Integrated

otherwise,

78. Angle-Gradients of Tangent
and Cotangent and Inte-

gration of Squares of Sine

and Cosine,

Gradient of Curve of Recipro-

cals, ....
a;-Gradient of Xx and inverse

Integration. Formula of

"Reduction,"
81. x-Gradient of X/x and In-

verse Integration, ,

79,

80,

CHAPTER IV.—IMPORTANT GENERAL LAWS.
Commutative Law,
Distributive Law,
Function of a Function,

Powers of the Variable

;

Powers of Sine and Co-
sine, ....

Reciprocal of a Function,
Product of Two Func-

tions, ....
Product of any number of

Functions,
Reciprocal of Product of Two

Functions,

Reciprocal of Product of

any number of Func-
tions

Ratio of two Functions,

92. Ratio of Product of any
number of Functions to

Product of any number
of other Functions,

93. Theory of Resultant Error,
94. Exponential Function,
95. Power-ljrradient of Expo-

nential Function, .

96. Natural, Decimal and other
Logarithms, .

97. Number-Gradient of Loga-
rithm, ....

98. Relation between different

Log-" systems," .

99. Base of Natural Logs,
100. LogarithmicDiffereutiation,
101. Change of the Independent

Variable,

37

38

39

40

41

43

44

52
52
S3

54

55

55

56

57
57

58



CONTENTS. XI

CHAPTER v.—PAKTICULAE LAWS.

PAKE
102. Any Power of the Variable, 69
103. Any Power of the Variable

by Logarithms,
104. Diagram showing Integral

of x-^ to be no real excep-

tion, ....
105. Any Power of Linear

Function,

106. Reciprocal of any Power of

Linear Function, .

107. Ratio of two Linear
Functions,

108. Ratio of two Linear

Functions, General case,

109. Quotient of Linear by Quad-
ratio Function,

59

60

61

61

61

61

62

112,

113,

114.

122.

110. Indicator Diagrams, .

111. Graphic Constructions for

Indicator Diagrams,
Sin-'a; and [i^ - x^)~i,

(1 -as")* Integrated, or Area
of Circular Zone, . .

a!(r^ - Q?)'^ Integrated,

115. (^±»^)~1 Integrated,

116. x-\r^-x')-'' Integrated, .

117. Log X Integrated,

118. Moment and Centre of Area
of Circular Zone, .

119. (fi+x^)-^ Integrated,

120. (r=-a?)-' Integrated,

121. Hyperbolic Functions and
their Integrals,

CHAPTER VI.—TRANSFORMATIONS AND REDUCTIONS.

Derivative

PAGE
62

123.

124,

125,

to clear of

Change of

Variable,

Substitution

Roots
Quadratic Substitution,

Algebraico - Trigonometric

Substitution,

126. Interchange of two Func-
tions, ....

127. Interchange of any number
of Functions,

128. General Reduction in terms

of second Differential

Coefficient, . .

129. General Reduction for X"", .

71 130. General Reduction of a»'X'',

131. Conditions of Utility of

71 same
72 132. Reduction of a?"(a-Fia?')'-, .

133. Reduction of r^^ power of

72 series of any powers of x,

134. Special Case,

73 135. 136. Trigonometrical Reduc-
i tions, ....

73 137. Trigonometrico - Algebraic

I Substitution,

I 138, Composite Trigonometrical

73
I

Reduction,

64

67
67

68

69

69

70

70

74

74

74

75

76
76

77

78

78

CHAPTER VII.—SUCCESSIVE DIFFERENTIATION
AND MULTIPLE INTEGRATION.

139. The Second rc-Gradient,

140. Increment of Gradient,

141. Second Increment,

142. Integration of Second lucre

ment,
143. Graphic Delineation, .

144. Integration of Second
Gradient, .

145. Curvature,.

146. Harmonic Function of Sines

and Cosines, .

147. Deflection of a Beam,

.

148. Double Integration of Sine

and Cosine Function,

149. Exponential Function,

80
81

82
82

84

84

86

86

150.

151.

152.

153.

Product and Quotient of

two or more a;-Functions,

Third and Lower x-Gradients
and Increments,

Rational Integral a-Func-
tions, ....

Lower K-Gradient of Sine
and Exponential Func-
tions

154, 155. General Multiple Inte-

gration,....
156. Reduction Formulae, .

157. Graphic Diagram of Double
Integration, .

158. Graphic Diagram of Treble
Integration, .

87

87

89
90

91

91



xu CONTENTS.

CHAPTER VIII.—INDEPENDENT VARIABLES.

159. Geometrical Illustration

two Independent Vari-

ables, . . .' .

Equation between Indepen-
dent Increments, .

Equation between Inde-

pendent Gradients,

Constraining Relation be-

tween three Variables, .

Equation of Contours,

General x, y, F(a^) Nomen-
clature,....

165. Two Functions of two Inde-

pendent Variables,

.

166. Applications to p, v, t and
<p Thermal Functions, .

167. OS-Gradient of {xy),

168. 169. Definite Integral of

Function of Independent
Variables,

FAOE
of

160.

161.

162.

163,

164.

99

170. Equation between Differ-

ences of Integrals, .

171. Indefinite Integral, .

172, 173. Independent Functional
Integration Constants, .

174. Complete Dififerentials,

175. Second x, y-Gradient,

176. Double Integration by dx
and dy,....

177. Graphic Representation of

Double Integration by dx
and dy,....

178. Connection between Prob-
lems concerning One
Independent Variable

and those concerning
Two Independent Vari-

100
100

100
101
102

103

103

104

CHAPTER IX.—MAXIMA AND MINIMA.

179. General Criterions,

180. Symmetry,
181. Importance of Maxima in

Practical Work,
182. Connecting-rod Bending

Moments,
183. Position of Supports giving

Minimum Value to the

Maximum Bending Mo-
ment on a Beam, .

184. Position of Rolling Load for

Maximum Moment and
for Maximum Shear,

185. Most Economical Shape for

I Girder Section, .

104
105

105

106

107

108

109

186. Most Economical Propor-
tions for a Warren Girder, 110

187. Minimum Sum of Annual
Charge on Prime Cost
and of Working Cost, . Ill

188. Most Economical Size for

Water-Pipes, . . . Ill
189. Maximum Economy Prob-

lems in Electric Trans-
mission of Energy, . . 113

190. Maxima of Function of two
Independent Variables, . 114

191. Most Economic Location of

Junction of three Branch
Railways, . . .115

CHAPTER X. -INTEGRATION OF DIFFERENTIAL
EQUATIONS.

192. Explicit and Implicit Rela-

tions between Gradients

and Variables, . . 117

193. Degree and Order of an
Equation. Nomencla-
ture 118

194. X'=f[x) 118

195. X'=/(X), .



CONTENTS. Xlll

CHAPTER X.-

PAGE
202. X=±a!X'+^X'), . . 123
203, 204:. Homogeneous Rational

Functions, . . . 124
206. X=!c/(X'), . . .125
206. X'=(Aa! + BX + C)-T-(Ba! + 6X

+ e) 126
207. Particular Case, B= -o, . 126
208. X' + Xi'= H, . . . 126
209. X' + XiE'=X»B, . . .127
210. X=zF{X')+f(X.'), . . 127
211. General Equation of 1st

Order of any Degree, . 128

PAOE
212. Quadratic Equation of Ist

Order, . . . .129
218. Equation of 2nd Order with

one Variable absent, . 129

214. 2nd Order Linear Equation, 130

215. X" + aX' + iX=0, . . 131

216. X" + aX' + bX=<f>{x), . . 132

217. XW=/i;a), . . . .132
218. X(»)=/<;X):XW=&X,. . 133

219. X"=yi;X) 133

220. X('')=/i;X(''-i)), . . .134
221. XW=/i;XI"-2)), . . .134
222. Xx"= (?Xy", . . .134





THE CALCULUS FOR ENGINEERS.

CHAPTEE I.

INTKODaCTOET.

1. Integration more useful than Differentiation.—In phy-

sical and engineering investigations the Integral Calculus lends

more frequent aid than does the Differential Calculus, and the

problems involving the Integral are more often of a practically

important type than those requiring the Differential Calculus alone

in their solution. But the ordinary student of mathematics never

reaches even an elementary knowledge of Integration until he has

mastered all but the most recondite portions of the science of

Differentiation.

It seems a priori irrational, and contrary to a hberal conception

of educational policy, to teach the higher mathematics in a manner
so contrary to almost self-evident utility. Adherence to this the

orthodox method of teaching in the Schools and Universities is, no
doubt, responsible for the persistent unpopularity of this branch of

knowledge and intellectual training among the classes devoted to

practical work.

2. Method of the Schools.—It must be admitted that no great

progress can be made in Integration without help from the results

obtained by Differentiation. Therefore, so long as the two are

taught as distinct subjects, by the aid of separate text-books, it is a

distinct convenience to the teachers to finish off one before entering

upon the other. If they be thus separated into two successive

periods of study, it becomes a practical necessity to give Differ-

entiation the priority in point of time.

3. Rational Method.—Still, it by no means follows that the

whole of the science of Differentiation must be known before any
of that of Integration can be explained, thoroughly mastered, and

A
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utilised. The ordinary system of teaching the subject forces the

practical student to spend on Differentiation an amount of time

altogetherneedless for his professional objects before ha enters upon
Integration. Much of the former he will never use. The latter,

from the very beginning, will supply him with abundant problems

of immediate interest and importance in his own special work, and
wUl, moreover, furnish him with a powerful engine that will enor-

mously lighten the difficulties of his own professional subjects and
make his progress in these tenfold more rapid.

Let it be noted, also, that very frequently the reasoning used to

find an integral is essentially the same as that used to find the

inverse difierential. It is thus pure waste of time to go thiough
this reasoning twice over. Once understood, it leads to the simul-

taneous recognition of the two inverse results, both of them, it may
be, eminently useful. Therefore, as far as practicable, the study of

Differentiation and Integration ought to be pursued 'pari passu.

4. Active Interest in the Study.—In modern education, in

which such large demands are made upon the intellectual energies

of the pupil, the necessity of the stimulus of a real active interest,

opening out easily recognised prospects of broadening and deepening

knowledge and of utilitarian advantage, ought to be conceded in

the freest and most liberal fashion. Moreover, it is right to lead

the pupU along the easiest road, provided it be a legitimate one.

The thoroughness of the training he receives in habits of sound,

trustworthy scientific thought depends more upon the length of

time he is guided within the limits of correct method, and less

upon whether he travels a short distance on a rugged and difficult

path or a long distance upon a plainer and smoother route.

5. Object of Present Treatise.—The object of the present

treatise is to introduce the student at once to the fundamental and
important uses of the Integral Calculus, and incidentally to those

of much of the Differential Calculus. This we desire to do in such

a way as to stimulate a growing desire to progress always further

in a branch of science which soon shows itself capable of supply-

ing the key to so many practical investigations.

6. Clumsiness of Conunon Modes of Engineering Analysis.—
At the present time our technical text-books are loaded with
tedious and clumsy demonstrations of results that can be obtained
" in the twinkling of an eye " by one who has grasped even only

the elements of the Calculus. These demonstrations are supposed
to be " elementary." They are not really so ; each of them really

contains, hidden with more or less skUl, identically the same
reasoning as that employed in establishing the Calculus formulas

applicable to the case in hand. They are, in fact, simply laboured
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methods of cheating the student into using the Calculus without

his knowing that he is so doing. There is no good reason for this.

The elements of the Calculus may be made as easy as those of

Algebra or of Trigonometry. More good, useful scientific result

can be obtained with less labour by the study of the Calculus

than by that of any other branch of mathematics.

7. Graphic Method.—Much of the Calculus can be rigorously

proved by the graphic method ; that is, by diagram. This method
is here used wherever it offers the simplest and plainest proof ; but

where other methods seem easier and shorter they are preferred.

The present book is strictly confined to its own subject ; and,

wherever it is necessniy, the results proved in books on Geometry,

Algebra, Trigonometry, etc., are freely made use of; employing
always, however, the most elementary and most generally known
of these results as may be sufficient for the purpose.

8. Illustrations.—Everywhere the meaning and the utility of

the results obtained are illustrated by applications to mechanics,

thermodynamics, electrodynamics, problems in engineering design,

etc., etc. <

9. Classified List of Integrals.—XThe part of the book which is

looked upon by its authors as the roost important and the most

novel is the last, namely, the Classified Reference List of Integrals.

This is really a development of a Classified List of Integrals which
one of the authors made twenty years ago to assist him in his

theoretical investigations, and which he has found to be con-

tinuously of very great service. He has never believed in the

policy of a practical man's burdening his memory with a load of

theoretical formulas. Let him make sure of the correctness of these

results, and of the methods by which they were reached. Let him
very thoroughly understand their general meaning, and especially

the limits of their range of applicabiHty ; let him recognise clearly

the sort of problem towards the solution of which they are suited

to help ; let him practise their application to this sort of problem

to an extent sufficient to make him feel sure of himself in using

them in the future in the proper way. Then let him keep notes

of these results in such a manner as will enable him to find them
when wanted without loss of time; and let him particularly avoid

wasting his brain-power by preserving them in his memory. The
more brain-power is spent yi^emorising, the less is there left for

active service in vigorous and wary application in new fields to

attain new results. Formulas have a lamentable characteristic in

the facihty they offer for wrong application. A formula fixed

perfectly in the memory, and the exact meaning and correct mode
and limits of whose application are imperfectly understood, is a
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pure source of misfortune to him who remembers it. It is infinitely

more important to cultivate the faculty of cautious and yet ready

use of formulas than to have the whole range of mathematical

formulas at one's finger ends ; and this is also of immensely greater

importance to the practical man than to keep in mind the proofs

of the formulas.

To obviate the necessity of such memorisation the "Classified

Eeference List of Integrals " has been constructed in the manner
thought most likely to facilitate the rapid finding of whatever may
be sought for. The results are not tabulated in " rational " order,

that is, in the order in which one may be logically deduced from
preceding ones. They are classified, firstly, according to subject,

e.g., Algebraical, Trigonometrical, etc., etc., and under each subject

they are arranged in the order of simplicity and of most frequent

utility. A somewhat detailed classification has been found desir-

able in order to facilitate cross-references, the free use of which
greatly diminishes the bulk of the whole list. The shorter such a

list is made, the easier is it to make use of.,

10. Scope of Prefatory Treatise.—This treatise does not prove

all the results tabulated in the " Keference List." The latter has

been made as complete as was consistent with moderate bulk, and
includes all that is needed for what may be described as ordinary

work, that is, excluding such higher difficult work as is never

attempted by engineers or by undergraduate students of physics.

The treatise aims at giving a very thorough imderstanding of the

principles and methods employed in finding the results stated

concisely in the " Eeference List " ;
proofs of all the fundament-

ally important results ; and, above all, familiarity with the practical

uses of these results, so as to give the student confidence in his own
independent powers of putting them to practical use. The last

chapter on the Integration of Differential Equations ought to aid

greatly in pointing out the methods of dealing with various classes

of problems. The niath chapter, on Maxima and Minima, is per-

haps more illustrative than any other of the great variety of very
important practical problems that can be solved correctly only by
the aid of the Calculus.
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CHAPTEE II.

GENBBAL IDEAS AND PEINCIPLBS— ALGEBRAIC AND GRAPHIC
SYMBOLISM.

11. Meaning of a " runction."—Suppose that a section be
made through a hilly bit of country for some engineering puipose,
such as the making of a highway, or a railway, or a canal. The
levels of the different points along the section are obtained by the
use of the Engineer's Level, and the horizontal distances by one or
other of the ordinary surveying methods. Let fig. 1 be the plot-

/ !* Z

Fig. 1.

ting on paper of the section. According to ordinary practice, the
heights would be plotted to a much opener scale than the horizontal

distances ; but in order to avoid complication in a first illustration,

we will assume that in fig. 1 heights and distances are plotted to

the same scale.

Each point P on this section is defined strictly by its level h
and its horizontal position I. The former is measured from some
conveniently chosen datum level. The latter is measured from any
convenient starting-point. These two are called by mathematicians
the co-ordinates of the point P on the curve ABC, etc.

Eor each ordinate I there is one defined value of the co-ordi-

nate h ; except throughout the stretch MN, where a break in the
curve occurs. Putting aside this exception, the height h is, when
this strictly definite relation exists, called in mathematical language
a " function "oil; or

Height = Function of Horizontal Distance,

or, more simply written in mathematical shorthand,

A = F(Z).
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12. Ambiguous Cases.—As seen from the dotted line drawn
horizontally through P, there are three points on the section at the

same level. Thus the statement that

Distance = Function of Height
or

l=f{h)

must be understood in a somewhat different sense from the first

equation : namely, in the sense that, although for each height there

correspond particular and exactly defined distances, still two or

more such distances correspond to one and the same height, so that,

if nothing but the height of a point were given, it would remain

doubtful which of two or three horizontal positions it occupied.

This ambiguity can only be cleared away by supplying special in-

formation concerning the point beyond that contained in the

equation.

13. Inverse Functions.—The two formulas

h='E{l)

and

i=m
are simply two different forms into which the relation between h
and I, or the equation to the curve, can be thrown. The first

form may be called the solution of the equation for h; the

second the solution of the equation for I.

The functions F( ) and /( ) are said each to be the " inverse " of

the other. An inverse function is frequently indicated by the

symbol - 1 put in the place of an index. For example, if s

be sin a, then the angle a may be written sin 'h. Or if I be the
logarithm of a number N, or Zi=log N; then N = log"'/, which ex-

pression means that " N is the number whose log is I."

14. Indefiniteness of a Function in Special Cases.—The
stretch of ground from E to S is level. Here the value of h corre-

sponds to a continuously varying range of values of l. For this

particular value of h, therefore, we have between certain limits in-

definiteness in the solution for I.

If there were under the point J a stretch of perfectly vertical

cliff, then for the one value of / to this cliff the solution for h would
be similarly indefinite between the limits of level at the foot and at

the top of the cliff.

15. Discontinuity.—From M to N there is a break in the curve.
In such a case mathematicians say that h is a discontinuous
function of I ; the discontinuity ranging from M to N.
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16. Maxima and Minima.—From A to C the ground rises ; from

C to E it falls. At C we have a summit, or a maximum value

of h. This maximum necessarily comes at the end of a rising and

the beginning of a falling part of the section. Evidently the

converse is also true, viz., that after a rising and before the

following falling part there is necessarily a maximum, provided

there he no discontinuity between these two parts. There is another

maximum or summit at K.
The ground falls continuously from C to E, and then rises again

from E onwards. There is no discontinuity here, and E gives,

therefore, a lowest or mimmum value of h. This necessarily

comes after a falling and before a rising part of the section

;

and between such parts there necessarily occurs a minimum, if

there be no discontinuity.

We have here assumed the forward direction along the section

to be from A towards the right hand. But it is indifferent whether

we call this or the reverse the forward direction as regards the

distinction between maximum and minimum points.

17. Gradient or Differential CoeflBcient.—Each small length

of the section has a definite slope or gradient. Engineers always

take as the measure of the gradient the ratio of the rise of the

ground between two points near each other to the horizontal dis-

tance between the same points. This must be carefully distin-

guished from the ratio of the rise to distance measured along the

sloping surface. This latter is the sine of the angle of inclinar

tion of the surface to the horizontal ; whereas the gradient is the

tangent of the same angle of inclination. This gradient is the rate

at which h increases with I. It is, in the present case, what is

called a space rate, or length rate, or linear rate, because the

increase of h is compared with the increase of a length I (not because

h is a length, but because Z is a length).

If at the point Q the dotted line Qg be drawn touching the sec-

tion curve at Q, then the gradient at Q is the tangent of the angle

Q2O. The touching line at point P on the downward slope cuts

00' at p, and the tangent of PpO' is negative. It equals the

tangent of PpO with sign reversed.

In the language of the Calculus this gradient is called the Dif-

ferential CoefBcient of h with respect to I. Taking the forward

direction as from A towards the right hand, the gradient is upward
or positive from A to the summit C ; downward or negative from
C to the minimum point E; positive again from E to K, and
negative from K to M. From N to E it is positive, and along ES
it is zero.

18. Gradients at Maxima and Minima.—At each maximum
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and minimum point (C, E, K) the gradient is zero. At each maxi
mum point (C, K) it passes through zero from positive to negative.

At a minimum point (E) it passes through zero from negative to

positive.

At H there is also level ground, or zero gradient. Here, how-
ever, there is neither maximum nor minimum value of h. This

point comes between two rising parts of the section: there is a

positive gradient both before and after it. Although, therefore,

we find zero gradient at every maximum and at every minimum
point, it is not true that we necessarily find either a maximum or

a minimum wherever there is zero gradient. ,

19. Change of Gradient.—On the rising part of the ground it

becomes gradually steeper from A to B ; that is, the upward gra-

dient increases. Otherwise expressed, there is a positive increase of

gradient. From B to C, however, the steepness decreases; there

is a decrease of gradient, or the variation of gradient is negative

(the gradient itself being stiU positive).

Thus the variation of gradient being positive from A to B and
negative frdm B to C, passes through' the value zero at B, the point

j^ere the gradient itself is a maximum.
From C to D the gradient is negative, and becomes gradually

steeper ; that is, its negative value increases, or, otherwise expressed,

its variation is negative. From D to E the gradient is negative,

but its negative value is decreasing, that is, its variation is positive.

Thus at D the variation, or rate of change of gradient, changes

from negative to positive by passing through zero, and at this point

D we have the steepest negative gradient on this whole slope CE.
The steepest negative gradient, of course, means its loivest value.

Thus at D we have a minimum value of the gradient.

20. Zero Gradients.—The distinction between the three parts

C, E, and H, at all of which the gradient is zero, becomes now clear.

At C the variation of the gradient is negative, and this gives a

maximiun height. At E this variation is positive, and here there

is a minimum height. At H this rate of variation of the gradient

is zero, and here, although the gradient be zero, there is neither

maximum nor minimum height.

21. Discontinuity or Break of Gradient.—Wherever there is a
sharp corner in the outhne of the section, as at I, J, E, S, T, U,
there is a sudden change or break of gradient. This means that

at each of these points there is discontinuity of gradient ; and
the above laws will not apply to such points.

Wherever there are points of discontinuity, either in the curve
itself or in its gradient, special methods must be adopted in any
investigations that may be undertaken in regard to the character-
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istics of the law connecting the ordinates. The methods applicable

to the continuous parts of the curve may, and usually do, give

erroneous results if applied to discontinuous points.

22. Infinite Gradient.—Under J the face being vertical, the

gradient is commonly said to be " infinite." At each of the sharp

points I, J, K, S, T, U, the variation of gradient being sudden,

the rate of variation of gradient becomes "infinite." More cor-

rectly expressed, there exists no gradient at J ; and at I, J, R, etc.,

there are no rates of variation of gradient.

23. Meaning of a " Function."—The symbolic statement

/i = F(Z)

is not intended to assert that the relation between I and h is

expressible by any already investigated mathematical formula,

whether simple or complicated. For example, in fig. 1 the said

relation would be extremely difficult to express by any algebraic

or trigonometric formula. Equally complicated would be the law
expressing the continuous variation of, for example, the horse-

power of a steam-engine on, say, a week's intermittent running ; or

that connecting the electric out-put of a dynamo when connected

on to a circuit of variable and, perhaps, intermittent conductivity.

Yet separate short ranges of these laws may in many cases be
approximated to by known mathematical methods ; and even when
this is not possible, many very interesting, important, and prac-

tically useful special features of the general law may be investi-

gated by mathematical means, without any exact knowledge of the

full and complete law. Thus without making any reference to, or

any use of, the exact form of the function F( ) in the equation

appKcable to fig. 1, we have already been able to point out many
important features of the law it represents.

24. Horse-power as a Function of Pressure.—Again, although

the actual running of, say, a steam-engine from minute to minute
varies with many changes of condition, still, if we choose to investi-

gate the separate effect of one only of these changes, for instance,

change of initial pressure, it may be found fairly simple. Thus we
may write

Horse-power = Function of Initial Pressure,

or

where p is the pressure. This means that any change of pressure

changes the horse-power ; and to investigate the separate effect of

change of pressure on horse-power, we consider all the other con-
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ditions to remain (if possible) constant, while the pressure changes.

Some other conditions may themselves necessarily depend on the

pressure, and these, of course, cannot be assumed to remain con-

stant. For example, the cut-oif may be supposed to remain con-

stant. But the amount of initial steam condensation in the cylin-

der depends partly on the initial pressure, and it cannot, therefore,

be assumed a constant in the equation HP = ^( p). Similarly, the HP
may be considered as a function of the speed, it alone being varied

while aU other things are kept constant. Or the HP may be taken

as a function of the cut-off, the initial pressure, the speed, and
everything else being kept constant, wMle the cut-off is varied.

25. runction Symbols.—When different laws connecting certain

varying quantities have to be considered at the same time, different

symbols, such as

^(O. /(O. <^(^). •/'(O.

are used to indicate the different functions of I referred to.

26. Choice of Letter-Symbols.—In fig. 1 we have used I to

represent a distance, because it is the first letter in the word
" Zera^^A,," and similarly A to represent " heiffht." It is very desir-

able when letter-symbols have to be used, to use such as readily

call to mind the nature of the thing symbolised. Especially in

practical applications of mathematics, and more particularly when
there is any degree of oompUcation in the expressions involved, is

the adherence to this rule to be strongly recommended. By keep-

ing the mind alive to the nature of the things being dealt with,

error is safeguarded against, and the true physical meaning of the

mathematical operations and of their results are more easily grasped.

Without a complete understanding of the physical meaning of the

result, not only is the result useless to the practical man, but its cor-

rectness cannot be judged of. If, on the other hand, the physical

meaning be fully grasped, any possible error that may have crept

in in the mathematical process of finding the result, is likely to be

detected and its source discovered without great difficulty.

27. Particular and General Symbols.—But many mathemati-

cal rules and processes have such wide application to so many
entirely different physical conditions, that, in order the more clearly

to demonstrate the generality of their application, mathematicians

prefer to use letter-symbols chosen purposely so as to suggest only

with difficulty anything endowed with special characteristics ; such

as X, y, z, symbols which do not suggest to the mind any idea

whatever except that of absolute blankness.

It is doubtful whether this is a desirable habit in mathematical

training. It seems probable that a course of reasoning might be
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more firmly established in the mind of the student if he were first

led through it in its concrete and particular aspect—the mind being

kept riveted on one special set of concrete meanings to be attached

to his symbols—and then afterwards, if need be, he may go through
it again once, twice, or, if necessary, a dozen times, in order to dis-

cover (if or when this be true) that the general form of the result

will remain the same whatever particular concrete meanings be

attached to his symbols.
28. X, y, and z.—There is one feature in the use ordinarily

made of x, y, z in mathematical books which the writer thinks is

a real evil. In his earlier chapters the orthodox mathematician

establishes a habit of using y to indicate a function of x : he con-

stantly writes y =f{x) : that is, he takes y to represent a thing

dependent on x, and which necessarily changes in quantitative

value when x changes. But in his later chapters he uses y
and X as two independent variables, that is, as two quantities

having no sort of mutual dependence on each other, the variation

of either one of which has no effect whatever upon the other. This

is apt to, and does, produce confusion of mind ; especially as regards

the true meaning of different sets of formulas very similar in appear-

ance, one referring to y and x as mutually dependent quantities,

the other referring to y and x as independent variables.

29. Functions of x.—When x is used to indicate a variable

quantity, any other quantity whose value varies in a definite way
with the varying values of x, may be symbolically represented in

any of the following ways :

—

¥{x), fix), 4>{x), fix), xix), and X, ^ or H.

The last forms, X, etc., are for shortness and compactness as con-

venient as y, and are more expressive. They will be used chiefly

in connection with x in the following pages.

30. X dependent on x.—X may mean a function which is capable

of being also changed by changing the values of one or more other

quantities besides x ; but in so far as it is considered as a function

of x, consideration of these other possible changes is eliminated by
supposing them not to occur. This is legitimate because these other

elements which go to the building up of X do not necessarily

change with x. All elements involved in X, which necessarily

change with x, are to be expressed in terms of x, and their variation

is thus taken account of in calculating the variation of X.
31. Nature of Derived Functions.—In dealing with functions

of this kind, mathematicians call x the "independent variable," a

somewhat unhappy nomenclature. X and x are in physical reality

mutually dependent one on the other. In the mathematical
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formula, however, X being expressed in terms of x, it is considered

as being derived from, or dependent upon, x ; the various values of

X being calculated from those of x, and the changes in X being

calculated.from the changes in x. Thus it should be Ijorne in mind
that the dependence of the one on the other suggested in the

commonly used phrase " independent variable " is purely a matter

of method of calculation, and not one of physical reality.

32. Variation of a Function.—Similarly Y may be used to

indicate a derived or " dependent " function virhose value depends
only upon constants and upon the variable y.

Or L may be made to denote a derived function depending only

on constants and on the variable /.

33. Scales for Graphic Symbolism.—Those readers of this

treatise who are engineers must, from practice of the art of Graphic

Calculation, be famihar with the device of representing quantities

of all kinds by the lengths of lines drawn upon paper, these

lengths being plotted and measured to a suitable Scale.

So long as the quantity of a function is its only charapteristic

with which we are concerned, each quantity can always be repre-

sented by the length of a line drawn in any position and in any
direction on a sheet of paper, the scale being such that 1 inch or

1 millimetre of length represents a convenient number of units of

the kind to be represented. In "Graphic Calculation " we very

commonly represent on the paper also the two other characteristics

of position and direction of the things dealt with; but in the

Differential and Integral Calculus, so far as it is dealt with in this

treatise, we are concerned only with quaniity.

It is convenient to draw all lines representing the various values

of the same kind of thing in one direction on the paper. Thus we
may plot off all the a;'s horizontally and the corresponding X's
vertically. If, when the magnitude of x is varied continuously

{i.e., vrithout break or gap), the change of X be also gradual and
continuous, there is obtained by this process a continuous curve
which is a complete graphic representation of the law connecting

X and X. The student ought at the outset to understand fuUy the

nature of this kind of representation. It is clear that it is in its

essence as wholly conventional and symbolic as is the letter-

symbolism of ordinary algebra. Spoken words, written words,

and written numbers are in the same way conventional ; they also

constitute systems of arbitrary symbolism. Graphic diagram repre-

sentation is neither more nor less symbolic and arbitrary than
ordinary language.

34. Ratios in Graphic Delineation.—The curve in flg. 2 is such
a graphic delineation of a law of mutual dependence between X
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and X. If X te of a diiferent kind from x, it is impossible to form
any numerical ratio between th.e two scales to which X and x are

plotted. For instance, if the X's are ft.-lbs. and the k's feet, then
the vertical scale may be, perhaps, 1" = 10,000 ft.-lbs., and the

horizontal scale 1" = 10 ft. ; but the number —i—— , or 1000, is

not a pure ratio between the two scales. But in physics we have
relations between things of different kinds, which are called physical
ratios. It is only by use of such physical ratios that derived

T:, dx ^

"Z. _dx

*__!/

Fig. 2.

quantities are obtained. Thus the physical ratio between a

number of ft.-lbs. and a number of feet, or ft.-lbs./ft., is a number
of lbs. The ratio is of an altogether different kind, in this case

lbs., from either that of the dividend or that of the divisor.

Now the ratio between a height and a horizontal distance on the

paper is a gradient measured from the horizontal.

In this example, then, a gradient would mean a number of lbs.,
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and each gradient would represent lbs. to a certain scale. Con-

tinuing the above example, a tangent or gradient measuring unity

on the paper, i.e., the tangent of 45°, would mean

^Q'Q?;;-^'"^ 1000 lbs.
10 It.

This is the scale to which gradients from axis of x are to be

measured ; or

Unit gradient =
Unit height on paper _ ^ ^^^^ j^^,

° Unit horizontal length on paper

Gradients measured from the axis of X have a reciprocal interpre-

tation and are to be measured to a reciprocal scale. Thus a;/X

means ft./ft.-lbs., or 1/lbs., that is, the reciprocal of a number
of lbs.

35. Differential CoeflBcient, a;-Gradient or X'.—The gradient

from axis of x of the curve at any point x, X, is called the " DiflFer-

ential Coefficient of X with respect to x," and is symbolised by

either ^^ or X'.
ax

The phrase " Differential Coefficient of X with respect to x " is

a cumbrous one. A shorter phrase is

the avgradient of X

;

and as this phrase is very easily understood and definitely descrip-

tive, it is used in this treatise.

The gradient of the curve from the axis of X is the reciprocal of

the above. It is called

the DiflFerential Coefficient of x with respect to X, or

the X-gradient of x

;

and is shortly written -—:

.

aX
36. Scale of X'.—The scales of X and x are in general different

;

and that of X' must always be different from either of these. The

numerical relation between these scales and that of -^ may be
uX

thus expressed

:

Let

the scale of the a^s be l" = s units of the x kind or quality
;

)i )) -^ s ,, 1 = o ,, ,, A ,, ,,
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then

the scale of the X"s is

S X
Unit gradient = tan 45° = — units of the — kind :

s X
and

the scale of the -—= is
aX

Unit gradient = tan 45° =— units of the — kind.
o X

37. Sign of X'.—The sign of X' is + when the slope of the

curve is such as to make both X and x increase positively at the

q» ^, c.

Fig. 3.

same time ; it is - when it makes one increase while the other

decreases. Evidently -^ must always have the same sign as X'.
dX.

The possible variation's of X' and -^ are very fully illustrated in

fig. 3.
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In fig. 3, + a; is measured towards the right and + X upwards ;

negative k's are measured towards the left and negative X's down-

wards.

The student should follow out the variations from + through

to - of hothX'and — throughout the lengths of all the four
dX

curves A, B, C, and D in each of the four quadrants.

38. Subtangent and Subnormal..—In fig. 2 there are drawn

three hnes from a point xX of the curve, viz., a vertical, a tangent,

and a normal. These intercept on the axis of x the lengths

marked T^, and N^, on the diagram. T^ is called the subtangent

and Nj the subnormal.

Since (by definition) the tangent has the same gradient as the

curve at its touching point, evidently

and

X' =|.orT.4

Here T,, measured to the a!-scale, and interpreted as being

of the same kind as the x's, is a true graphic representation of

X/X'.

But —2 is of the same kind as x/X, and, therefore, would be

not of the same kind as X/N^., if N^ were measured to the a>-scale,

and interpreted as of the same kind as x. Thus in order that N^,

may be used as a true graphic representation of X'X, which is of

the same kind as X^/x, care must be taken not to measure it

to the x^cale, and not to interpret it as the same kind of thing

as X.

If the diagram were replotted, leaving the a!-scale unaltered, and
making the X-scale more open, the paper-height of X would be
increased, and the paper-gradient X' would be increased in the

same proportion. It can easily be shown that the paper-length of

Ta, would remain unaltered, while that of N^, would be increased in

a ratio which is the square of that in which X is increased. Simi-

larly if, while the X-scale is maintained unchanged, the x-scale

were altered so as to increase the paper-length of x, then the

paper-gradient of the curve would be decreased in the same pro-

portion as a; is increased ; Tj, would be increased in the same pro-

portion as a; ; N^ would be decreased in the same proportion.

Thus Nj; in order to be a true graphic representation of X'X, a
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quantity whose dimensions are those of XV»;, must be measured to

the scale

l" = §i units of the
(f)

kind.

In fig. 2, Ta, and N^, are taken upon the ic-axis, and may be termed

the P5-subtangent and a;-subnormal. If ,the curve-touching line and
the normal be prolonged to cut the X-axis, they and the horizontal

through the touching-point will give intercepts on the X-axis,

which may be termed the X-subtangent and X-subnormal, and
may be written T^ and 'R^. They are shown on fig. 2, and their

proper scales are given below.

39. Scale of Diagram Areas.—An area enclosed by any set

of lines upon such a diagram may be taken as the graphic repre-

sentation of a quantity of the same kind as the product X.x, and
must be measured to the scale, 1 sq. inch = (Ss) units of the (Xa;)

kind.

40. Table of Scales.—The following is a table of interpreta-

tions of the diagram. This diagram wiU be constantly used here-

after for both illustrations and proofs, which latter cannot be

accepted as legitimate unless the whole nature of this manner of

symbolic expression be intimately understood.

Table of Intbrpeetations and Scales of DiAaHAMUATio ok Graphic
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41. Increments.—In going forward from a point on the curve

a little way, a rise occurs if the gradient be iipwards. The short

distance measured along the sloping curve may be resolved into two
parts, one parallel to axis of x, the other parallel to axis of X.
These two parts are the projections of the sloping length upon the

two axes. They constitute the differences of the pairs of x and
X co-ordinates at the boguining and the end of the short sloping

length. These differences are designated by the Greek 8; thus,

see fig. 4,

8x projection on aj-axis, ana
oX ,, „ X ,,

Since the gradient X' is the ratio of rise to horizontal distance

throughout a short length, it is evident that

SX = X'8x.

If I and L be the co-ordinates, and if the gradient be called L',

then this would be written

8L = L'SZ.

If p and Y were the co-ordinates, the gradient being called Y',

then
SY = Y'Sy.

42. Increment in Infinite Gradient.—These are the direct self-

evident results of the definition of gradient, or differential co-

efficient. They do not, of course, apply to points where there is

no gradient, that is, to sharp corners in a diagram, where the direc-

tion of the diagram line changes abruptly.

If the diagram line run exactly vertical at any part, then for that

part X' becomes infinite, and the equation appears in the form

SX = 00 X
an indeterminate form.



GENERAL IDEAS AND PRINCIPLES. 19

This last case corresponds to the piece of vertical cliff under

point J in the section fig. 1.

43. Integration.—The general case corresponds to the gradual

stepping along the other parts of this section. The length of each

step is projected horizontally {81 or Sx) and vertically (8^ or 8X).

The latter is the rise in level, and it equals the gradient multiphed
hy the horizontal projection of the length of step.

In stepping continuously from one particular point on the section

to another, for instance, from A to C on fig. 1, the total horizontal

distance between the two is the sum of the horizontal projections

(the Si's or &'s) of all the separate steps ; and the total difference

of level is the sum of the vertical projections (the Sh's, or 8L's, or

8X's) of all the separate steps. In climbing the hill, the cKmber
rises the whole difference of level from A to C, step by step : the

total ascent is the sum of all the small ascents made in all the long

series of steps. If the distance be considerable, the number of

steps cannot be counted, except by some counting instrument, such

as a pedometer ; but the total ascent remains the same, whether it

be accomplished in an enormous number of extremely short steps

or in an only moderately large number of long strides.

The mathematical process of calculating these sums is called

Integration.

This mathematical process is indicated by the symbol the Greek
capital S, when the individual steps are of definitely measurable

small size. But when the method of summation employed is such

that it assumes the steps to be minutely and immeasurably small,

the number of them being proportionately immeasurably large, and
when, therefore, of necessity the method takes no account of, and
is wholly independent of, the particular minute size given to the

steps, then the symbol employed is I , which may be looked

upon as a specialised form of the English capital S, the first letter

of the word " sum." The result of the summation is called the

Integral.

44. Increment Symbols.—The separate small portions, whose
sum equals the Integral, are called the Increments or the Differ-

entials.

When the increments are of definitely measurable small size,

they are indicated by the symbols 8a;, 8X, Sh, 8L, 8Y, etc., etc.

When they are immeasurably minute, and their number corre-

spondingly immeasurably large, they are indicated by the symbols
dx, dX, dh, dL, dY, etc., etc.

45. Integration Symbols. Limits of Integration.—The inte

gration is carried out between particular limits, such as B and C in
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fig. 1. These limits are sometimes written in connection with the

symbols of integration, thus :

c C /"C ro

•2 8h ,
"2 SI OT dh , dl.

B B J B J B

If IJic be the co-ordinates of the point C, fig. 1, and Zb?% be those

of the point B, then these integrals mean the same thing as

{ho - h^) or {Ic - Ib)

The limits are above indicated in the symbol by the names only

of the points referred to. The points themselves are, however,

frequently indicated only by the values of their co-ordinates, and
then H is customary to indicate the limits of integration oy writing

at top and bottom of the sign of integration the limit-values of the

variable whose increment appears in the intregral. Thus, since

shAi
at

we have the integral of Sh between B and C expressible in the two
following forms

:

If particular points be indicated by numbers, the symbolism be-

comes somewhat neater. Thus the integral of SX between the

points 1 and 2 of the x, X curve at which points the ordinates may
be called x^ x^, and the co-ordinates Xj X2, is

X, r^2
= X'a

'x,

Or, again, if it were convenient to call the two Umiting values of

X by the letter-names a and b, then the same would appear as

'b

X'dx.
a

Or, if the limiting values of x were, say, 15 and 85 feet, it would
be written

"85

X85-Xi5= I X'dx.
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It must be noted that the limits which are written in always
refer to values of the variable whose increment or differential

appears in the integration. Thus the a and b or the 85 and 15

above mean invariably values of x, not values of X nor of X'.

46. Linear Graphic Diagrams of Integration. In figs. 5 and
6 are given two methods of graphically representing this process of

integration. The first corre-

sponds with the illustrations

we have already employed.
Here the curve xX is supposed
to be built up step by step by
drawing in each small stretch

of horizontal length Sx at a

gradient equal to the known
mean gradient X' for that

length. The gradient X' is

supposed known for each value

of X, and its mean value

throughout each very small

length Sx is therefore known.
"With regard to this statement it should be noted that a curve

does not really possess a gradient at a point, but only through-

out a short length. When we speak of the slope of a curve at

a point, what we really mean is the slope of a minute portion

Fig. 5.

Fig. 6.

of its length lying partly in front and partly beyond the point

:

that is, there is actually no difference of meaning between the

phrases "the slope of the curve at the point" and "the mean
gradient throughout a short length at this point." Since each

increment of X, or 8X, equals X' times the corresponding in-

crement of X or Sx, we have in fig. 5 all these increments of X
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There is, however, nothing meaningless or impossible in / dX at

the same place. In fig. 1 up the vertical face under J, the 8X's, or

Sh's, have the same concrete, finite meaning as they have else-

where. Thus it is clearly improper to write I dX = I X'dx for this

part of the integration ; the formula, which is true in general, fails

under these special conditions.

61. Change of Form of Integral.—If L be a function of the

variable I, and if its Z-gradient be called L', then SL = L'8Z ; and if

A, be any other function of I, then
|
Xdl = I —, dL. When A and L'

are both capable of simple expression in terms of L, the latter form

of the integral may be more easUy dealt with than the former.

Such a transformation of an integral is called a change of the

independent variable or " substitution." *

52. Definite and Indefinite Integrals.—Sometimes the limits

of the integration are not expressed in the written symbol,

which then stands simply / X'dx. When thus written, it is under-

stood that in the integration the variable x increases continuously

up to an undefined limiting value, which is to be written x in the

expanded form of the integral. In fact by / X'dx is meant |
X'dx,

the upper limit being any final value of the gradually increasing x.

The lower limit may be written without defining the upper limit.

Thus I aX'dx means (X - X^ ). If various upper limiting values of

X be successively taken, the part of the integral function involving

a remains unchanged.
Such an integral may be written

(x'dx = X + G,

that is, as the sum of two terms, one of which, C, remains unchanged
when the upper limit is varied, while the other, X, remains the same
although the lower limit be changed. This is called the indefinite

integral, and C is called the constant of integration.

When both upper and lower limits are particularised, as in

aX'dx, the quantity is called a definite integral.

53. Integration Constant.—To show the exact meaning of the

* See Classified List, II. G.

/
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integration constant C, compare tlie above two forms of writing

the indefinite integral. The values of X being the same in both

cases, it is clear that C equals ( - X^). The integration constant,

therefore, depends on the imphed lower limit of w ( = a). If C be

given, the implied lower limit a is thereby fixed ; and conversely,

if a be given, its value determines that also of C.

The indefiniteness of the indefinite integral may, therefore, be

considered as due to free choice being left as to either or both

limits. The part X depends on the choice of the upper Hmit, and
remains indefinite so long as that is not fixed. The part C depends

on the lower limit, and is indefinite until this limit is fixed.

54. Meanii^ of Integration Constant.—Figs. 7 and 8 may help

to elucidate further this question of limits and of integration con-

stant. In fig. 7 the same curve is drawn thrice in different posi-

tions in the diagram. P'Q'E' is PQE simply raised at every point

X
/-!
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are equivalent to equal downward and left-hand horizontal shift-

ings of the axes from which the co-ordinates X and x are measured.

Thus the two shiftings are combined in fig. 8. Here, in order to

J

< n
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have a value independent of the arbitrary datum level from which
X is measured (so that m will not appear) : but, on the other hand,

terms involving n will appear, i.e., the value of X will depend on
the position of the axis from which the x'b are measured.

56. Extension of Meaning of Integration.—In the expression

X + C, taking X to represent the whole integral quantity, it is

often easy to select the axes of reference so as to give a specially

convenient value to C.

For example, if the integral X be the deflection of a symmetri-
cally designed girder, symmetrically loaded and supported at its

two ends, the symmetry of the problem makes it a priori evident

that equal deflections occur at equal distances on either side of the

centre of the girder length ; and, if this centre be chosen as the

origin from which to measure the a;'s, equal deflections will be
found for equal + and - values of x, and this condition, if

applied, will be sufficient to determine one integration constant.

57. Integration the Inverse of Differentiation.—It is important

to recognise that the operation of integrating a known function X'
can lead to only one definite result, or rather to a series of results

which differ from each other only in the value of the constant C.

If through any point of P'Q'R' in fig. 7 there were drawn any
curve deviating at any part from P'Q'R', it is evident that, at some
parts at least of this other curve, it would have a gradient difi'erent

from that of the part of PQR lying immediately below or above it.

Thus all curves having the same X' for each x are related to each

other as are PQR and P'Q'R'. Now these two curves taken

between the same limits give the same difference of height ; and,

if the integral be taken in the "indefinite " form, as meaning the

total height at any x from the horizontal axis, the heights of the

two curves differ everywhere by the same amount m, that is, the

two indefinite integrals differ only in the value of the constant C.

58. Usual Method of finding New Integrals.—Since, then, a

definite function of x when integrated with .respect to x gives one

and one only function of x (definite in all but the particular value

of the additive constant), therefore, if we happen to know of a

curve which gives at each point an a;-gradient equal to the function

of X which we wish to integrate, we conclude with certaiuty that

the height of that curve is the integral sought for. The level of

the axis from which the height is to be measured is fixed by the

special, or "limiting," conditions of the problem.

This is the usual method of finding integrals : namely, we make
use of our previous knowledge of differentials. The finding of

differential coefficients, or gradients, is an easier process in general

than the reverse or inverse process of finding integrals. This differ-
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ence is analogous to that we observe in ordinary geometry, in which
it is simpler to find the tangent of a known curve than it is to find

the curve by building it up from a knowledge of the direction of

its tangent at each point.

In some simple cases, examples of which wUl be given in the

next chapter, it is as easy to find the integral directly as it is to

find the difierential. Very often the study of the character of a
curve or law leads to the simultaneous recognition of the differential

and the inverse integral.*

CHAPTEE III.

EASY AND FAMILIAR EXAMPLES OP INTEGRATION AND
DIFPEBBNTIATION.

59. Circular Sector.—An easy example of integration is the
finding the area of a circle, or of any sectorial part of a circle.

In fig. 9 there is drawn an isosceles triangle of very small verti-

cal angle placed at 0, the centre of a circle, and whose correspond-
ingly smaU base is a very short tangent to the arc of the circle.

The height of this triangle is r, the

^,' --^^ radius of the circle. Its base is,

*" '\ in a minute degree, longer than the

,' \ arc, but equals the arc in length

with an approximation which is

closer as the vertical angle at be-

comes smaller. Taking hp, the peri-

pheral arc length, as an approxi-

mation to the base, the area is

|r.8p. The whole angle AOB may
be split up into a very large number

I" . of minute angles, in each of which
may be formed a small triangle

similar to the above. The sum of the areas of these triangles is

greater than that of one of them in the same ratio that the sum of

their bases is greater than the base of one of them, because the
factor \r has the same value in all. The series of bases form a
connected chain of very short tangents lying outside the arc AB.
As the individual links of this chain become shorter, and the total

number of them correspondingly greater, the sum of their lengths
becomes equal to the arc length AB with closer and closer approxi-
mation, and, at the same time, the sum of the triangular areas

* See Appendix A.
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equals that of tte circular sector ABO with closer and closer

approximation. Thus, taking the arcs minutely short, and call-

ing the arc length AB by the letter p, we find

Circular sectorial area := ^r.p

.

For the complete circular area the length of arc p becomes the

complete circumference of the circle or ^irr. Thus the complete

circular area is ttt^.

Here the important point to note is, that the approximation of

the sum of the triangular areas to equality with the circular area

proceeds pari passu with that of the sum of the tangent lengths to

the circular arc length.

60. Constant Gradient.—In this integration the factor !?• is a

constant. The variable is p, the arc length measured from some
given point on the circular circumference. The increment of p is

8p : that is, Sp may be looked upon as the increase of the arc

length p, as the sectorial area is swept out by a radius revolving

round the centre 0. The integral is the gradually increasing area

so swept out. The increment, or differential of this area, is ^r.Sp.

Thus \r is the differential coefficient of the area with respect to

p; or Jr is the ^-gradient of the area. Calhng the constant \r by
the letter k, we may write this

-r— (hp) = k; ov otherwise | kdp — kp.*
dp J

61. Area of Expanding Circle.—A second simple example of

integration is that of the area swept through by the circumference of

a gradually expanding circle. Let the radius from which the expan-

sion begins be called r^ : the area inside this initial circumference

is ttt-^. At any stage of the expansion when the radius has become
any size r, the area swept through has been {irr^ - ttt-^). This is the

indefinite integral ; the constant of integration being here - ttt^.

As r increases by h" from {r - JSr) to (r + \hr), the area swept
out by the circumference is a narrow annular strip whose mean
peripheral length is iirr, and whose radial width is hr, as shown on
fig. 10. The area of this annular strip, therefore, equals Hirr.h;

and this is the increment, or differential, of the integral area swept
out. The "differential coefficient with respect to r," or the

"r-gradient," of the area is, therefore, 2irt'. That is, the r-gradient

of (wr^ + C), where C is any constant, is 27rr. Otherwise written,

4('"-2H-G) = 2,rr.
dr

* See Classified List, I. 4, and III. A. 1.
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Here tt is a constant multiplier, and, if any other constant miiltiplier

k were used, the result would be

dr

Fio. 10.

Written in the inverse manner, the same result appears as

h
62. Kectangular Area.—A third simple example is shown in

fig. 11. Here a vertical line of length k is moved horizontally to

the right from an initial position a.j. Its lower end moves along

the axis of x. Its upper end moves along a horizontal straight

Fig. 11.

line at the height k above this axis. The vertical sweeps out a

rectangular area equal to k multiplied by the length of horizontal

movement. At any stage x of the movement the area swept out

* See Classified List, III. A. 2.
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is k(x-Xi). Here the variable is x. Call its increment Sx.

While the vertical moves horizontally Sx, the area swept out is a

narrow rectangular strip equal to kSx. This is the increment of

the integral area. Thus the a:-gradient of the area is k Calling
the constant - fccj by the letter C, this result may be written in
the two forms

and

|(fa + C).J,

/
Mx= kx+C .*

This result is identical in form with that of § 60, fig. 9, except
that in the latter the integration constant is zero and does not
appear, and the variable is named p, while x is the name adopted
in fig. 11. The choosing of one or other name to indicate the
variable is, of course, of no
consequence ; but taken as two
illustrations of purely geome-
tric integration, the two re-

sults are of different kinds,

although taken as formulas

simply they are identical.

63. Triangular Area.—In
fig. 12 we have an area swept
out by a vertical line as it

moves from left to right, and
increases in height at a uni-

form rate during the motion.

Its lower end lies always in

the axis of x. Its upper
end hes in a straight line whose inchnation to the a:-axis is

called m.

During the movement Sx, from {x - JSa;) to (x + ^Sx), the mean
height of the small strip of area swept out is (k + mx), and its area,

therefore, is

Qt + mx)Sx

.

The whole area swept out during the motion from the lower
limit Xi to any upper limit x may be divided into two parts ; one
rectangular with the base (x - x^) and the height (k + mx^ the
other triangular with the same base and the height m(x-Xi).

Fig. 12.

See Classified List, III. A. 1.
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This whole area is, therefore,

{x - Xi){{k+ mxi) + |m(a; -Xi)} = k(x - x^ + ^m{x^ - x^) .

This may be written in the form

\jcx + ^moi?
J

which form means that the function of x standing inside the square

bracket is to be calculated for the two values of x, x and x-^ (the

former " indefinite " or not particularised, the latter special), and

the latter value of the function subtracted from the former.*

Again, it may be written in the other form

kx + \ma? + C

where C is a " constant of integration."

This result may be expressed by either of the two following

equations :

—

— \ kx + imx^ + G > ^k+ mx

and

I

(k + mx)dx = Aa; + ^mv? + C .

\^

64. First and Second Powers of Variable.—The last integral

may be split into two parts. The first is

/"\Mx= kx + C.^

which is identical with what is obtained in iig. 11. The second is

I mxdx = \ma? + Cg/"

which is the sweeping out of the triangular area.

65. Integral Momentum.—The following are other easy ex-

amples of the first of these two formulas.

The extra momentum acquired by a mass m in the interval

between time t^ and time t.^^, during which its velocity is acceler-

ated at the constant rate g, if its velocity be «j at time t^, is

m(«2 —
''i)

=
I
ingdt = mg{t^ - 1^

.

* See Classified List, " Notation."
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Here mg is the acceleration of momentum, or the time-gradient of

the momentum.
_
66. Integral Kinetic Energy.—The simultaneous increase of

Kinetic Energy is

fW - %') = f [gKh - hf +Uh - h>x}

= Extra Acquired momentum x Average
Velocity during interval.

67. Motion integrated for Velocity and Time.—Again the

distance travelled by a train between the times t.^ and t^, when
running at a constant velocity v, is

to

h

Here the velocity v is the time-gradient of the distance travelled.

68. Motion from Acceleration and Time.—Easy examples of

the second formula are the following :

—

If the velocity of a mass be accelerated at the uniform rate g ;

then, since the velocity at any time t is {§'('- ^i) + «i}, and since

in a small interval of time ht, the distance travelled is vM, where
V is the average velocity during 8t, we find the distance travelled

in interval {t^ - 1^ to be

/:
{gt - gt^ + v^}dt = -!-(«/ - V) - ^i(<2 - h) + \{h - h)

={h-h){^i+Mh-h)}-
If this be multiplied by mg, we get again the increase of kinetic

energy as shown above in § 66; so that the increase of kinetic

energy equals the uniform acceleration of momentum (mg) multi-

plied by the distance travelled.*

69. Bending Moments.—As another example, take a horizontal

beam loaded uniformly with a load w per foot length. If we name
by the letter I lengths along the beam from any section where we
wish to find the bending moment due to this load ; then on any
short length SI there is a load w.Sl, and the moment of this load

upon the given section is wl.Sl, where I means the length to the

• See Appendix B.
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middle of 81. The integral, or total, moment exerted upon this

section by the part of the load lying between Zj and l^ is

" /n

k
^

= whole load on il^ — l^ multiplied by the distance of the

middle of the same length from the given section.

It must be noted that this is the moment exerted by the load alone

independently of that exerted by the forces supporting the beam.

70. Volume of Sphere.—Passing now to volumetric integrals,

we may consider a very small sectorial part of the volume of a

sphere as an equal-sided cone of very smaU. vertical angle placed

at the centre of the sphere, and with a very small spherical base

nearly coinciding with the flat surface of small area touching the

sphere. The volume of the small cone with the flat base is known
to be \ the product of its base area by its height. The height here

is r, the radius of the sphere. This is true whatever be the shape

of the cross section of the cone. Now the whole volume of the

sphere is made up of a very large number of such small-angled

cones with spherical bases, these cones fitting close together so as

to fill up the whole space. They would not fit close together if their

cross sections were, say, circular; but the argument does not

depend on the shape of the cross section, and this is to be taken

such as will make the cones fit close together. In all these small

conic volumes, the common factor \r appears as a constant ; each

is Jj'.SA, if 8A represent the area of the small base. Thus the

sum of the volumes is greater than any one of them in the same
ratio as the sum of the areas of the bases is greater than the base-

area of that one. Thus if A be the sum of the bases, or |
dA. = A,

we have the sum of the volumes equal to \rA. For any sectorial

portion of the volume of the sphere, the sum of the areas of the

flat tangent bases approximates to the area of the corresponding
portion of the spherical surface pari passu with the approxima-
tion of the sum of the flat-based conical volumes to the sum of the

round-based conical volumes, which latter is the true spherical

volume. Thus, if A be the area of the spherical surface, the

volume subtended by it at the centre is JrA. If A be taken as the

complete spherical surface, then JrA is the total spherical volume.
This integration is in form identical with that of fig. 9. It

differs from that in Mud, inasmuch as the differential SA is an
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area, while in fig. 9 the diiferential 8p is a line. The mathematical
process is the same in both cases ; but the legitimacy of the appli-

cation of this process depends in the one case upon the physical

relations between certain curved and straight lines, while in the

other case it depends on the physical relations between certain

curved and flat surfaces.

When it is known that the ratio of the surface-area of a sphere

to the square of its radius is iir, the above integration proves the

complete spherical volume to be ^^ (see § 76 below).

71. Volume of Expanding Sphere.—Consider now the spherical

volume as swept through by the surface of a gradually expanding
sphere. If the radius be rj at one stage of the expansion, and ?•

at another, the volume swept through between these two stages is

|^7r(r^ - r^^). During any small increase of size Sr from the radius

(r - J8r) to (r-f J8r), the volume swept out is the normal distance

Sr between the smaller and larger spherical surfaces multiplied by
the mean area of the spherical surface during the motion, viz.,

4irr^. That is, the increment of volume is

The definite integral of this is, as above stated,

and the indefinite integral for an indefinite size r is

i-rr' + G.

Thus 4nT^ is the r-gradient of
(-f

irr' + C) .

If X were used to represent the radius, and X the volume, and
X' the K-gradient of X and the constant factor Att be written Jc

:

we would here have

X= lkx'dx = ^x^ + G*

Expressed in words, the radius-gradient of the spherical volume is

the spherical surface.

72. Volume of Expanding Pyramid.—Consider a rectangular-

based pyramid of height x, and the two sides of whose base are mx
and nx. The area of the base is mnx^, and, therefore, the pyram-
idal volume is ^mni^. Now, suppose the size of this pyramid to

be gradually increased, keeping its shape unaltered, by extending

* See Classified List, III. A. 2.
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its sides in the same planes, and moving the base away from the

vertex while keeping the base always parallel to its original posi-

tion. As the height x increases, the sides of the rectangular base

both increase in the same ratio so as to remain always ')nx and nx

;

and, therefore, the increasing volume is always equal to \mnx^.

As the base moves a distance 8a; away from the vertex from the

height {x-\^x) to {x + \hx), the increase of volume thus added to

the pyramid is the mean area of the base during this motion, viz.,

mva?, multiplied by the normal distance hx between the old and
the new bases. The increment of volume is thus mnx^.Sx. The
definite integral volume taken between the limit x^ and X2 is

\mrKC^ I

If the constant factor mn be written k, this result would be thus

expressed, taking the indefinite form of the integral :

—

ikxHx = \ka? + G ,

which is formally or symbolically identical with the last result

obtained. The difference between the two in kind is perhaps best

recognised by comparing the word-expression of the last result with
the following similar statement of our present one :

—

The height-gradient of the volume of a pyramid of given shape
is the area of the base of the pyramid.

In this last statement of the result no reference is made to the
special shape of the cross section of the pyramid, and it is readily

perceived that the reasoning employed above did not depend in

any degree upon the rectangularity of the base.

73. Stress Bending Moment on Beam.—Take as another ex-

ample of this formula leading from the second power in the gradient
to the third power in the integral, the calculation of the stress-

bending moment of a rectangular beam section exposed to pure
bending of such degree as produces only stresses within the elastic

limit. Under this condition the normal stress on the section in-

creases uniformly with the distance from the neutral axis, which
in this case is at the middle of the depth. Thus, if the whole
depth of the section be called H, and the intensity of stress at the

top edge (at distance — from neutral axis) be called Tc ; then the
z

intensity of stress at any distance h from the axis is i =^ = — ft.

JH H
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If the width of the section be B, the area of a small cross strip of

it, of depth 8h, is B87i. If h mean the height to the middle of Sh,

then the whole normal stress on this strip is -—- hSh, and the

moment of this round the neutral axis is
2/rE

H h^ . Sh, because h is

the leverage. The sum of these moments over the half of the

section lying above the axis is the integral of this between the

limits h = and h = JH, or

2JfB , „ „ r2Z;B

H

~3H 'T

J

=^BH^

An equal sum of moments of hke sign is exerted by the stresses

on the lower half of the section, and thus the

Total Stress Bending Moment = -^/<;BH2.*

74. Angle Gradients of Sine and Cosine and Integration of

Sine and Cosine.—In fig. 13 the angle u is supposed measured

in radians, that is, in circular measure, the unit of which is

the angle whose arc equals the radius.

Eadians, sines, cosines, tangents, etc., are |^

pure numbers, or ratios between certain

lengths and the radius of a circle; but

if the radius be taken as unity, as in

fig. 13, then these ratios are properly re-

presented by lengths of lines, this graphic

representation being to an artificial scale

just as, to other artificial scales, velo-

cities, moments, weights, etc., can be

graphically represented by line-lengths.

In fig. 13 the angle a is measured to

such a scale by the length of the arc Na,

while to the same scale sin a is measured Fig. 13.

by as and cos a. by ac. Take a very

small angle Sa, and mark off from N the two angles (a - |Sa) and

(a + J8a). The horizontal and vertical projections of 8a (parallel

to as and ac) are evidently the increments of the sine and cosine

* See Appendix G.

\
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for the angle increment 8a. The horizontal projection is a posi-

tive increment of the sine ; the cosine decreases as a increases, so

that the vertical projection is the decrement or negative increment

of the cosine. If 8a be taken small enough to justify the short arc

being taken as a straight line, 8a and its two projections form a small

right-angled triangle of the same shape as Oas. We have, therefore,

Increment of sina= 8(sina) = Horizontal projection of 8a

= —x.Sa = cosa 8a
aO

and

Decrement of cosa = - 8(cosa) = Vertical protection of Sa

as » „ Si= —-.Su = sina oa

.

aO

Integrating these increments between any limits Oj and oj, the

results aie

""2

cosa da =

and
I
sina cZa= I - cosa I = oosa^ - cosaj

.

fa-2 r n"2
sina da^l - cosa I =

The student should carefully follow out this integration on the

diagram through all four quadrants of the complete circle, paying

attention to the changes of sign.

Written as indefinite integrals these results are

/
cosa da = sina + C

and
j
smada=G- cosa .

*

Expressed in words, this is, the angle-gradient of the sine of an

angle is its cosine, and that of its cosine is its sine taken negatively.

75. Integration through 90°.—Since sin 0° = and cos 0° = 1,

while sin 90° = 1 and cos 90° = 0, we find, integrating between the

limits 0° and 90°,

90°

coso da=l
0°

r90°
I

I
sina da =

J0°
and also

See Classified List, VI. 1 and 2.
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76. Spherical Surface.—Let this result be applied to the calcu-

lation of the area of the earth's surface, assuming it to be spherical.

The -whole surface may be divided up into narrow rings of uniform

width lying between parallels of latitude. Thus, if the difference

of latitude be taken to be ^°, the uniform width of each ring will

be about 17J mUes. The meridian arc througliout this length may
be considered straight without appreciable error. The ring at the

equator forms practically a cylindrical ring of radius equal to that

of the earth, E. A riag taken at latitude \ has a mean radius

E cos \ ; and the circumferential length of its centre line is therefore

2irR cos \. Naming the difference of latitude for one ring SA., the

width of the ring is E.SX, and its area therefore 2irR cos A..E.8X =
27rE^ cos A..8X. The factor QttE^ being the same for all the rings,

we may first sum up all the products cos X.SX, and afterwards

multiply this sum by the common factor 2irR^. If we perform this

integration from the equator to the north pole, that is, between
the limits X = 0° and X = 90°, we obtain the surface of the hemi-

sphere. The integral of cos X.8X from 0° to 90° is 1 ; and there-

fore the hemispherical surface is 2TrR^, and the whole spherical

surface iirW. We used this result in § 70, p. 35.

77. Spherical Surface integrated otherwise.—The above total

is 2jrE X 2E. Here 2irR is the circumference of a cylinder touch-

ing the sphere, and 2E is the

diameter of the sphere; so that

the whole spherical surface equals

that of a touching cylindrical sur-

face whose length equals the dia-

meter (or length) of the sphere.

In fig. 14 this circumscribing

cylinder is represented by its axial

section nn, ss. For each strip

of spherical surface of radius r

bounded by parallels of latitude

XX, XX, there corresponds a strip

of cylindric surface U, II of radius

E, which latter is, in fact, the

radial projection on the cylindric

surface of the spherical strip. It

is easy to prove that the arc XX
is greater than its projection II in the same ratio that E is greater

than r. Hence the areas of the two differential strips are equal

;

and, therefore, the integral areas from end to end are also equal.

This proof is more elementary than that given in the previous

paragraph.

^
/R---N>

s

Fig. 14.
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78. Angle-Grradients of Tangent and Co-tangent and Integra-

tion of Squares of Sine and Cosine.—In fig. 15, a small angle-

increment 8a is marked off equally below and above the angle o,

and radii are drawn from centre through the extremities of 8a

out to meet the two tangents to the quadrant of the circle at N
and E. The tangent of o, or tan a, is measured along the tangent

tan,(cf4Sa) ' >i* -itan a— «i

from N to the radius at a, and its co-tangent, or cot a, along the

tangent at E to the same radius. The increments of tan a, and of

cot a, due to 8a, are marked on the figure. 8 tan u, is a positive

increase of tan o for a positive increase of the angle, while 8 cot a

is a decrease of cot a. The lines U and ce are drawn parallel to

the short arc 8a. tt is therefore inclined to 8 tan a at the angle a,

and cc to 8 cot o at the angle (90° — a). Therefore

tt = cos a.8 tan o and ce= - sin a.8 cot a

.

Here the - sign is used in order to make co positive (8 cot a being

negative).

Now tt is greater than 8a in the ratio of Ot to the radius of the

circle, or =-^. Similarly ee is greater than 8a in the ratio -=-^.

That is,

8a = ^^.cos a= cc.cos (90° -a.) = ee sin a

.

Therefore,

80 = cos ^a.8 tan a = - sin ^o.S cot a

.
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Taking all the increments minutely small, these results are written

(2 tan a—->- - =the angle-gradient of the tangent

]_
cos%

and

— , = the angle-gradient of the co-tangent

1

sm-'a

Or otherwise

/
—jT-da = tan a + G

J cos 'a

and

I -7—IT (ia = C - cot a .*

J sm ^a

79. Gradient of Curve of Keciprocals.—In figure 16 there is

I I

'T

zwjimLm\wjMrw^^̂

* y/'

K- — X^ — >« ^Of-X^j- — -M
U x M

Fie. 16.

drawn a curve of reciprocals ; the horizontal ordinate being x, the

vertical ordinate is —

.

X

See Classified List, VI. 11 and 12.



42 THE CALCULUS FOR ENGINEERS.

The area of the rectangle formed by the axes and the ordinates

at any point is xy. — = 1 ; constant for all points of the curve.
X

These two rectangles at the two points Xj^ and x overlap each other,

having the common area ajj x — as part of each. Subtract this
X

common part and there is left

xJ ) = (»•- ^)—
\os^ X j ^ " X

or

J_ J_
X-^ X \

This is the ratio of the decrease of — to the increase of x. When
X

the increments are made minutely small, — becomes practically
XjX

— . In the figure a small increment of x, viz., hx, is set off equally
X
below and above x. The above equality of areas means the

equality of the two narrow strips of area rafined over in the figure.

The equality is, therefore,

{.-i8.}.8(l)={ 1-^8(1) }8..

fl\ ..4 <¥)
Adding iSa;.8( —• ) to each side and writing instead of\x / dx

changing also the sign, because — decreases while x increases, we
X

X

dx

Expressed in words this is :—The a^-gradient of the reciprocal of

X is minus the reciprocal of the square of x. Writing this result

inversely, we have

/
dx f^ 1 *

X^ X
* Seo Classified List, IIL A. 2.
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where C is the integration constant to be determined by special

limiting conditions.

80. a^Gradient of Xx and Inverse Integration. Fonnnla of

Reduction.—In fig. 17 there

is drawn a curve whose ordi-

nates are called x and X. /'

X represents any function /

of a^. a; is taken to the
'

middle of Bx ; and, since the
|

arc-length corresponding to \

8a; is of minute length and \
may therefore be considered

"'^

as straight, the point xX on
the curve bisects this arc-

length and also bisects SX.
Also the horizontal and ver-

tical lines through the point

a;X on the curve divide the rectangular area ab into four equal

parts, each ;|8a;.8X.

The increase of the , rectangular area Xx due to the increase Sx
of X is, therefore,

(X -I- ^SX){x + ^Sx) - (X - |8X)(a; - JSa;) = XSa; + xSX

by actual multiplication, the first and fourth terms of each product

cancelling out.

The first of these two terms of this increment is the strip of

area between the two dotted verticals of height X ; the second is

the strip between the two dotted horizontals of length x. These
two strips overlap each other by the \{ab) small rectangle, and this

has to be taken twice to obtain their sum. This compensates for

the two strips not covering the outer small ^(ah) rectangle.

Dividing by 8a;, and taking minutely small increments, that of

(Xa;) being called d{Xx), and the ^-gradient of X being called X',

there results

^) =X + X'a;.
dx

According to §§ 38 and 40, pp. 16 and 17, the X-subtangent

measures X'a; ; therefore the present ai-gradient equals the sum of

the function X and its X-subtangent. This X-subtangent is shown
in fig. 17, where it is also graphically added to X.

The result written in the inverse integration-symbolism is

l(X + X'x)dx = Xsc + C.
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As explained below in § 83, the integral j(K + X'x)dx==

jXdx+ jx'xdx. Therefore the result of this article may be

written

jxdx = Xx- jx'xdx + C.

This is an important " Eeduction Formula." *

81. a^Gradient of X/x and Inverse Integration.—In fig. 18

a curve is drawn whose ordinates are called x and X, any

function of x. From two points x,X and {x + 8ic), (X + 8X)

M4)
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\x/ x\ x + Sx J

Therefore, dividing by &b,

dx X 3?

X
where, since extremely minute increments are taken, — is substi-

tutedfor^Ltp.*
X + 6X

CHAPTEE IV.

IMPORTANT QENBEAL LAWS.

82. Commutative Law.—If A-X'Sa; is to be integrated, where

to each X'Sa; the same constant multiplier k is to he applied, it is

evidently allowable to sum up first the series of products X'Ssc,

and then to multiply this sum by k. Symbolically written this is

jkX'dx^kjX'dx

taken between the same limits in either case.f

Keverting to the graphic representation of integration in fig. 5,

the proposition means that if there he two curves drawn, of which

one has at each x its height k times the other, then the first has at

each X its gradient also k times as steep as that of the other.

83. Distributive Law.—If there be two curves such as in fig. 6,

the height of one being called X' and that of the other H', then a

third curve may be drawn, of which the height is (X' + H'). The

area under the first curve is j'K'dx; that under the second is

I'a'dx; that under the third is I (X' + S')<i». For each Sx at the

same x, the area of the narrow strip (X' + S')8a; for the third curve

equals the sum of the two strips X'Sx and WSx for the first two

* See Appendix D. t See Classified List, I. 4.
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curves. Since this is true of each strip, it is true of the whole

areas ; or,

jX'dx + j'a'dx = [(X' + nyx *

the limits of x being taken the same in all three curves. The two

curves may represent entirely different functions of x, subject only

to the one condition that they must be of the same kind, it being

impossible to add together quantities of different kinds. In both

integration and differentiation this proposition is more frequently

used by way of sphtting up a whole integral into parts easier to

deal with taken separately than by the converse process of com-

bining parts into one whole. It may be extended to the more

general formula

f(X' + H' + J' + etc.)dx = jx'dx + ju'dic + JM'dx + etc.

If the separate integrals on the right-hand side of the last equa-

tion be called X, H, ip, etc. ; then the dififerential view of the same

proposition is that the

a;-gradient of {X+'a +M + etc.}

=
|- 1 X -t-

H
-(-
J -K etc. I = X' -t-

H' + if' -I- etc.

= a;-grad.X + w-grad.H -1- x-grad.M + etc.

Evidently the proposition of § 82 is only a special case of this

in which X' = E' = M', etc., etc.

84. Punction of a Function.—In fig. 19 there is drawn a curve,

the horizontal and vertical ordinates of which are called I and L.

Thus L is a function of I, the nature of the function being graphi-

cally described by this curve. A second curve is drawn, the ver-

tical ordinates to which are the same L's as for the first curve

(plotted and measured to the same scale), and whose horizontal

ordinates are called \. A. is a function of L, the curve graphically

characterising the form of the function. A. is a quantity which
may possibly be of the same kind as I, and, if so, it might be
plotted to the same scale. But the general case is that in which
A. is not of the same kind as I, and cannot possibly, therefore,

be plotted to the same scale, although in the diagram it is measured
in the same direction.

Since for each given value of L the second curve gives a definite

* See Classified List, I. 5.
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corresponding value of \, and the first curve gives a definite value

oil; it follows that for each value of I there is a definite value of

X. In general there may he more than one value of \ for each I

;

but all the values of X corresponding to one given value of I are

definite. Thus A is a definite function of I.

In the figure the Z-gradient of L is represented graphically by a

height obtained by drawing a tangent at the point /L, and plotting

horizontally from this point a distance representing to the proper
scale unity. This gradient is called L' in the figure.

The I^-gradient of A. is similarly represented, the unit employed
being measured vertically, and not being the same as that used in

M-X'-

l M

Fig. Ifl.

finding L', because the scales involved are different. It is marked
X'. The two gradients shown in the figure are for the same value

of L ; that is, the tangents are drawn at points at the same level

in the two curves.

If 8L and hi are the two projections of any very short length of

the first curve lying partly on each side of the point where the
ST

tangent is drawn, L' = -^ . If 8L and SX are the projections of
ot

any very short length of the second curve lying partly on each

8X
side of the point where the tangent is drawn, then X'= ^v •

oL
If the two short arcs on the two curves be taken so as to give the

same vertical projection, that is, the same 8L, as is shown in fig. 19

by the dotted lines ; then in the product L'X' the 8L cancels out.
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Thus,

= -^ when the increments are
dl

taken minutely small. In words this is :—The Z-gradient of A
equals the L-gradient of A. multiplied by the Z-gradient of L.

If we use the notation x, X, and F(X) instead of I, L, and X

;

and if by F(X) we understand the X-gradient of F(X) or-^^^

;

the same is written

dx
^'-^''•^ " ax dx-

85. Powers of the Variable; Powers of Sin and Cos.—This
general proposition is one of the most fruitful of all laws in pro-

ducing useful results when applied to particular functions, as will

be seen in the next chapter.

Simple illustrations of its meaning are the following :

—

Let
L = Z2andA. = LS ..\ = 10.

From §§ 64 and 7 1 we know that
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Written inversely,

Again, let

L =?3 and A. =L8 .•.k = l^

Written inversely,

Again, let

, dX. dp „,g
' dl dl

~

I'
isdl =~*

L = ?'andX = L^ .-. X = Z'.

From the last example ^ = 9^^, and also L' = 21. Therefore

orX'=^=4|Z' = 4im
CCLj

Similarly, of course, if X = a^, then

Written inversely / st^doc = -^ .
*

J H
Again, let

L= cos I and \ = L' = cos^Z

.

Then L' = - sin I and X' = 2L = 2 cos I

cL cos ft

.• -— = -2cosZsin?= -sin2Z.
dl

Take two more examples : namely,

L = sinZ and L= cosZ, while \ =^.

Then X' = - =r^ in both cases, and

L' = cos Z in 1" case

= - sin Z in 2"^ case.

* See Classified List, III. A. 2.
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Therefore, since 1/sin I = cosec I, and 1/cos I = sec I,

d cosec I cos I

and

dl sinH

d sec I sin Z

dl cosH

86. Reciprocal of a Function.—The second and the last of

these illustrations are special cases of the semi-special semi-general

case—a very important one

—

Here we obtain -— = X'L' = -=r^.
dl U

Dividing by X, that is, multiplying by L, we obtain this in the

, . , J. 1 dX. L'
more symmetrical form _- —- = - ^—

.

\ dl h

87. Product of two Functions.—Eetaining the notation of the

last two articles, one particular function, to which we may apply

the rule of § 84, is the product XL. Thus

^L)^^L) rfL

dl ~ dL ' dl
'

But by § 80,

Multiplying by — and observing that by § 84, -=- . -37 = jt,
dl , djLt dl ui

there results

d()dA^}dL^ L

—

dl dl dl
'

If X, H and X be used for the three mutually dependent variables,

instead of the letters X, L and I; and if X' and W be the a^gradients

of X and B ; then the above is written

dx

This extremely useful result may be easily proved directly by the
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method of fig. 17, drawing a curve with ordinates X and S, and
considering the increment of the rectangular area XS. This incre-

ment is evidently

X.8B + E.SX

and dividing this by 8a; the above result is obtained.

Written as an integration this result is

jxn'dx+j:X"Hdx = X'B

fx'H'dx = xn- j:
or XS'^a;=XH- X'Udx*

This latter form is the most fundamental and useful of the "for-

mulas of transformation," and is usually referred to as " Integration

by Parts." By its help most of the "formulas of reduction" are

obtained.

88. Product of any Ntunber of Functions.—This result may
at once be extended to the product of any number of different

functions H, J^, etc. etc. of x. The a;-gradient of this product is

the sum of a number of terms, each of which is the product of all but
one of the factors multiplied by the a:-gradient of that one factor

omitted. The result may be written in more symmetrical form if

each term be divided by the product of all the factors. Thus, call

the whole product X, or let

X = H-Jetc., etc.

then

J^l'
+l + etc+etc.

where X', B', X', etc., are the i«-gradients of X, S, X, etc.

89. Eeciprocal of Product of Two Functions.—The a;-gradient

of the reciprocal of the product of two functions H and Jf of a; is

found with equal ease. Call this reciprocal X and its a^gradient

X'. Then

X-1 1

and by last paragraph, § 88 and § 86

E X
* See Classified List, I. 8.
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90. Reciprocal of Product of any Number of Functions.—The
extension of this law to the reciprocal of the product of any
number of functions is made by simply repeating the process of

the last paragraph.

91. Ratio of Two Functions.—To find the a:-gradient of the
quotient of two functions of x, we combine the laws of § 87 and
§ 86. Thus, if

then
^-i~^-i

X B ^\ JV B J-
It will be a useful exercise for the student to deduce this result

directly by the method of iig. 18 and § 81, making the co-ordinates

to the curve H and M instead of X and x, and without using the law

92. Ratio of Product of any Number of Functions to Product
of any Number of other Functions.—It is now apparent that all

the results of^ 86-91, inclusive, may be combined into the following

single more general formula :—if

L M N, etc., etc.X =
P Q E, etc., etc.

where L, M, N, P, Q, R, etc., are functions of x, and if X', L', P',

etc., be the a;-gradients ; then

X' L' M' N' , . P' Q' E' , ,

X =L+M -^F^ ''^'
''"--V -Q E - '"'•' '''

93. Theory of Resultant Error.—If the last formula be mul-

tiplied by Sir, and if we call X'Sx= 8X, L'Sa;= SL, ¥'Sx= SP, etc.;

all direct reference to x disappears and the formula becomes

SX SLSUm SP SQ SE , ,

X^L + M-'n ^ ''' '*"•-
P Q - E - ''°-''"'-

Now, if L, M, etc., represent measurements of physical quantities

that have been made in order to calculate from them the quotient

X; and if, by any means, it be known or estimated that the

measurement of L has been subject to a small error SL, and that the

measurement of M has been subject to a small error SM, etc., etc.

;

bhen -^ is the ratio of error in the measurement of L, and — is
L M
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the ratio of error in the measurement of M, and similarly with

the other factors ; whUe — is the resulting ratio of error in the
A

calculated quotient X.
The above proposition may then be expressed in the following

words :

—

The ratio of the product of a number of measured quantities to

the product of another set of measured quantities is subject to a

ratio of error, equal to the sum of the ratios of error in the indi-

vidual multipliers reduced by the sum of the ratios of error in the

individual divisors.

Attention must here be paid to the signs of the errors. Thus,

if 8L is a negative error, then -y is really a negative fraction.

Similarly, if 8P is a negative error, then (
-^ 1 is really a positive

fraction.

Now, although there is often reason for supposing the suspected

error to lie more probably in one direction than in the opposite,

stiU errors being things which are avoided as far as possible (or

convenient, or profitable), and, therefore, not consciously incurred,

it is never known for certain whether any individual error be +
or - . Thus, although divisors give by the formula ratios of error

of opposite sign to those given by multiphers, it may happen that

all the terms in -= are really of the same sign, and have, therefore,
Jo..

all to be arithmetically added to get the whole ratio of error. Thus,

if we are considering what may be the maximum possible error in X,
we must pay no attention to the difference between multipliers and
divisors, but add all the ratios of error in all the factors (both

multipliers and divisors) together independehtly of sign.

It need hardly be pointed out that this maximum possible error

is greater than the probable error.

94. Exponential Function.—In fig. 20 is drawn a curve with
horizontal ordinates called I, and vertical ordinates bi. I varies

continuously. Here I is essentially a number ; not, of course,

necessarily a whole number, since its variation is continuous. 6 is a

constant, and receives the name of the " base " of this curve. If b

were any physical quantity, then its different powers would have

various physical " dimensions," and would mean physical quanti-

ties of different kinds. In fig. 20 we assume the various vertical

ordinates as all of the same kind, and therefore b cannot be a

physical quantity, but must be a pure number. On this assump-
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tion we find that 6' is also a pure number. In this problem, there-

fore, both horizontal and vertical ordinates can be nothing but
pure numbers.*
At the same time it must be noted that if A; be a physical

constant quantity, either a unit or any other quantity, then IcV

represents a varying physical quantity of the same kind.

95. Power Gradient of Exponential Function.^If n be any
fixed number, 6" is also a fixed constant number. We may write

6'= 6''.6"-"'.

Here &' is the vertical height of the curve, fig. 20, at any
horizontal distance I; while 6''""' is the height of a point on the

curve at the constant horizontal distance n to the left of I.

Considering various Vs and various pairs of points with ordinates

I and (Z - n), we perceive that the nature of this curve gives a

constant proportion, 6", between the heights of all pairs of points

at the constant horizontal distance n apart. A succession of

points at the equal horizontal spacing n have their heights

advancing in geometrical series, the common ratio of which is 6".

Taking the Z-gradient, or slope, of the curve at I, and remember-
ing that 6" is a constant factor, we find

dW ^„ cZft"-"'— = 6" .

dl dl

This means that there is also the same constant proportion, 6",

between the gradients as between the heights at all pairs of points

horizontally n apart.

Dividing the height by the slope we obtain the subtangent

,

see § 38.

Subtangent at Z = say T = 6 /— .

I dl

Subtangent at (Z - m) = say T„.„, = fe"-"'/^^"""'

.

These two last expressions are equal, because the common factor

&" cancels out in their ratio. Thus the two subtangents are equal

in length ; see fig. 20.

Now the length of the subtangent at Z does not depend in any
way upon the length n. For any one point Z, we may take various

lengths n, thus getting various points (Z - n), at all of which the

subtangent equals that at the one point Z. This means that at aU
points along the curve the subtangent has the same length.

* In Sir William Hamilton's Quatemions, ( - 1) raised to a. continuously
increasing power is used to indicate rotation or gradual change of direction.
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Inverting the last equation,

— =—.b'= Constant x 6',

the constant being the reciprocal of the constant length of sub-

tangent. The subtangent being a pure number, its reciprocal is

also a pure number.
96. Natural, Decimal, and other Logarithms.—When T = l

(unity), and the above constant is therefore also unity, the base

h is designated by mathematicians by the letter e. It, e, is

the base of the "natural" or "hyperbolic" or "Neperian"
logarithms.

Each system of logarithms has a "base," which is a number
and to which all other numbers are referred. Every number,
whether whole or fractional, is represented as this " base," raised

to a certain power. The power to which the base must be raised

in order to produce each number is the logarithm of that number.
Thus, it i' be a number, and if b be taken as the base of the system

of logarithms, then I is the log of the number 6' to the base h.

In the "Common," or " Brigg's," or " Decimal " logarithms, the

base is 10 ; every number being represented as 10 raised to one or

other power.

The result of § 95 may be expressed thus :—In any system of

logarithms the logarithm-gradient of the number bears a constant

proportion to the number itself. The reciprocal of this constant

proportion, or the subtangent in the graphic representation of

fig. 20, is called the " modulus " of the system of logarithms.

The "natural" system of logs may be defined as that which
gives the rate of increase of the number compared with its loga-

rithm equal to the number itself ; or which makes the logarithm-

gradient of the number equal to the number itself; or, symbolically,

d^_
,

the constant for this base e being unity. The base e is calculated

to be 2'71828 . The modulus of this system is 1.

97. Number Gradient of Logarithm.—If we call the number N,
then in fig. 20 the vertical height of the curve is N and the

horizontal ordinate is its logarithm. The curve is sometimes
termed a logarithmic curve ; sometimes an exponential curve. It

takes difi'erent forms according to the logarithmic base h used in

drawing it out. In fig. 21 these variations of form are shown, the

five curves having the bases

h = %e, 8, 10, and 12,
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All these curves come to the same height N = 1 at ?= 0. At Z = 1

the height of each is the base 6. To the left of the vertical axis

where I is negative, the height N is always less than unity, and

decreases asymptotically to the horizontal axis towards zero height.

Fig. 22 shows the extension of these same curves to high numbers
with positive logarithms. The logarithm to the base e of the

number N is written log,, N. The logarithm to the base 6 of N is

written logj N. Thus the decimal log of N may be unambiguously
written log,o N.
The results of §§ 95 and 96 written in this notation, and taking

the reciprocal or conjugate gradient from the vertical axis, instead

of the Z-gradient, are

dloglS dl T

the constant T being the modulus of the system of logarithms;

and
dlogTS _ dl 1

d'S "«iN~N

if natural logs are used in which the base is e and the modulus
unity.

98. Kelation between DiflFerent Log " Systems."—Any base b

may be looked on as the base e raised to a certain power, which

we will call -=^. Thus
T

6 = 6* and e = V^.

Therefore, if

TS = U = Ji;

also

logsN = Z = T logeN = log, N. log, e.

Thus there is a constant ratio T = log5e between the logarithms

of numbers to the base b to their logarithms in the "natural"
system.

Taking the N-gradients of these last logs and remembering that

T is a constant,

dlog^S _ dlog^S T
dE dN "N

which shows that the T of this paragraph means the same as the T
of the last, § 97, or the subtangent of fig. 20.
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Written as an integration result, this is

J N logje

It is useful to notice that a '"^fi*= a^°^6 ", because taking logs on
each side, we find log;, x . log^ a = logj a . logs x.

It follows that (a^''^o'dx=
—^°^''''

.f
; 1 + logj a

99. Base of Natural Logs.—Although the calculation of e, or

of the modulus T of any logarithmic system, is very laborious,

there is no other difficulty about it beyond its tediousness. Thus
to find the modulus of, say, the decimal system, an extremely small

root of 10 has to be extracted. Thus the square root may be

extracted, say, 100 times over. This will give (^)^°°th power of

10, which is a number a very minute fraction over 1. Now the

decimal logarithm of this number is (ly", which is easy to calcu-

late, and the logarithm of 1 is zero. . The former is, therefore, the

increment of the logarithm corresponding to the number increment

from 1 to the (|^)™th power of 10. If the ratio of this logarithm

increment to the number increment be multiplied by the number,
which is here 1, the product is the decimal log-modulus.

The laborious part of the operation is finding the
(
J)^''°th power

of 10. Extracting only a higher root, the increments will be

larger, and the calculation will not give so great accuracy. Thus,

if the extraction of the square root be repeated only 10 times, the

result of the calculation gives

Tio = 0'434 294 116 J

whereas by more minute calculation its true value to 9 decimal

places has been found to be

0-434 294 482.

The error is only O'OOO 000 366.

100. Logarithmic Differentiation.—Taking again the function

of § 92, and taking logs, we have

log X = log L + log M + etc. - log P - etc.

* See Classified List, III. A. 3. + See Classified List, IV. 7.

t Calculated by Mr K. F. Muirhead from the value

-10 -o-lO _lo
log 10? -log 10 10^

10^-"- 10-'"" 2»(l0=-»-l)
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and differentiating witli respect to x, we have by §§ 84 and 98

t;
,X' ^jL' M' ^ P' M

)

which is the same result again as was found in § 92.

This method of differentiating products of functions is called

" logarithmic differentiation."

101. Change of the Independent Variable.—The rule deduced

in § 80 was written

[xcZa; = Xa;- j X'xdx.

Now X'&c is the same as 8X ; so that the integral on the right

hand may be written I xdX. The equation becomes then

I
Xdx = Xx- jxdX.

If
I
xdX is easier to find than I Xdx, this forms a method of

facihtating the latter integration. Such a transformation is called

a " change of the independent variable " or " substitution."

Fig. 23 is the graphic representation of this law. Taking the

Tig. 23,

integration between the points 1 and 2 of the curve xX, the

transformation is written

fx, rx,
Xdx=(X^2-'^vh)- ''^^^'
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In fig. 23 tlie sum of th.e two areas rafined over thus /////
and mil is evidently (K^x^-X-^Xj). The first of these areas,

namely, that between the curve, the vertical axis, and the two

horizontallines at levels Xj and Xg, is xdX. The second, included

between the curve, the horizontal axis, and the two verticals at

distances x-^ and x^, is Xdx . Hence the above equation.

In fig. 23 the point 3 has a negative ordinate x, while its X-
ordinate is positive. A useful exercise for the student is to follow

the variations of the proposition, taking the pair of points in each

possible pair of quadrants of the full diagram.

CHAPTEE V.

PARTICULAR LAWS.

102. Any Power of the Variable.—In § 99 the integral of

- was found to be log^ x. This is the single exception to a general
X
law giving the integral of any power of a variable, special examples

of which have already been demonstrated in §§ 59, 61, 71, 79,

and 85, namely, the integrals of the 0*^, P', 2"^ ( - 2)-'^ 5'",

( - 4)'", 8* and SJ"" powers.

All these examples conform to the general law

/
x'^dx^^+G*

w + 1

where C is the integration constant

;

daf+^

dx
(« + l)a;''.

103. Any Power of the Variable by Logarithms.—This

result can be proved to be always true by logarithmic differentiar

* See Classified List, III. A. 2.
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bion as explained in § 100 ; thus, n being any power, positive or

negative, integer or fractional,

X = a;"

.". log X = re log X

1.' = ??

'X ~x

.•.X' = «— = na!"-'
X

104. Diagram showing Integral of a;"' to be no Real Ex-

ception.—This formula is true for aU powers of the variable, with

the one exception of the integral of - or a;"', which is log, a;.

X
It is often a puzzling question to students why there should be

this one solitary exception to so general a law. Fig. 24 has been

drawn to demonstrate graphically that it is only formally an

exception j that it is in reality no exception at all. To compare

this one apparent exception with other cases of the general law,

the integrations must be taken between the same limits. It may
be convenient to take the lower limit of x equal to 1 because

log 1 = and I log x\ = log x. Taking the same lower limit for

I IrT'a!" — 1
-x" we have - k" =- because 1"=-- 1 whatever n be.
II nL Ji n

a;"- 1
In fig. 24 there are drawn to the scales shown, the curves

71

for re = 2, 1, 1, yV) ~ tVi ~h ~^> ^^^ ~ ^- There is also plotted

to the same scales the curve log^ x. It will be seen that the curves

for TO = j'jj and re = - Jj^ lie very close together, and that the curve

loge X lies between them throughout its whole length. This shows

that the logarithmic curve is simply one of the general set of

curves illustrating the general law, and that it is no real exception

to the general law. Its position between the curves for « = ± ^^
shows that loge x is simply the special name given to the value of

a;" -

1

the function when to is an excessively miuute fraction, or rather

when TO is zero. Considering the variation of the curve in fig. 24
downwards from positive values of re to negative values of to, it is

clear that the curve must have some definite position as n passes

through zero, a position lying between that for small positive

values of n and small negative values of to. This position is that
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of the curve loe, x. For n — 0, the function takes the
n

indeterminate form —^— = —^1- = - , and its value has to be found
0'

by a special method, the result appearing in a special form. It

should be noted that aU the curves pass through the height at

the horizontal distance x=l, and that they have here one common
tangent or gradient = 1.

105. Any Power of Linear Function.—If a, b, and n are

constants, and
X = ia + bxY,

we have by § 84 and last article.

Written inversely for integration, this is

f{a + bxTdx=j^^ (a + &«)«+> + C *

the constant C being introduced by the integration.

/<'

106. Reciprocal of any Power of Linear Function.—This last

integration rule fails when «= - 1.

In this case we find by §§ 51 and 98,

/ 1 2"3

/(a + 6a;)-i(&!=^ log, (a + te) + C = —~ logio(a + 6a;) + C.t

107. Ratio of Two Linear Functions.—The function ,

"""
can

be reduced so as to make it depend on the last case,

b + cx

ah
, ax a —
because = <•

b + cx e
b+ cx

Therefore, by §§ 102 and 106,

h
ax . ax ah-, ,,

, \ , ri
dx = Aog,{b + cx) + C .

'b + cx e c^

108. Ratio of Two Linear Functions; general case.—Since

the function

A + Ba;_ A Bx
a + bx a + bx a + bx'

* See Classified List, III. A. 4. t See Classified List, III. A. 5.
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the integration of this function is performed by combining the

results of §§ 106 and 107.*

109. ftuotient of Linear by Quadratic Function. — If

X IX'X = a + 6a;2: then X' = 26a; and ^r-« = KT~^-' a+ bx^ 26 X

Nowj^dx = [x = ^°8e X by § 98

;

therefore

/
dx='^log,(a + hx^) + C

a+bx^ 2b

where C is the integration constant.

Similarly if X. = a + bx + cx^ ; then X' = 6 + 2cx, and, therefore,

any function of the form
A + Eg

a + bx + cx^

can be readily integrated by splitting it into two terms as in § 107.t

110. Indicator Diagrams.—An important case of the use of the

law of §§ J.02 and 105 is the integration of the work measured by
an indicator diagram.

If at any stage of the expansion p be the pressure and v be the

volume of the working substance, then as the volume increases by

dv, the work done is pdv.

Taking the expansion law in the more general form of § 105, or

p = {a + bv)''';

then the work done during expansion from p^, v^ to Pg, v^ is

Expansion work done W= I pdv=
j
(a+hv)~''dv

Here the index is always negative. If it is arithmetically greater

than 1, the expansion curve makes p(a + bv) negative. But at

the same time the divisor (1 — w) is negative, so that the formula
makes the work done positive. It is then better to reverse the

limits and to use the positive divisor (« — 1).

• See Classified List, III. A. 6. t See Classified List, IIL A. 17.
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If a = 0, or /) = &«", as in most approximate formulas for expan-

sion curves, the result simplifies, by cancelling out b from numerator

and divisor, to*

=^W1W
n-

p, ' V-

1

--P2^i: n-\

V2'J

lb — X

These formulas, which are all practically useful, give the work

done during expansion in terms of the ratios between the initial

and final volumes, and of the initial and final pressures ; also in

terms of the initial product pv and of the final product pv. The
latter formula is most useful in the case of air and gas compression

pumps where the initial and known volume and pressure are v^p^.

The " admission " part of the indicator diagram has an area^i«i,

and this has to be added to the above, giving the total work done

These calculations do not take account of the back pressure

deduction from the area of the card.

* The constant 6 used here equals the -n"" power of the h used in the

previous formula.
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The " mean pressure " of this total area is the last value of W
divided by v^, or

£3
Pi \v,' w - 1 J

From this the back pressure must be subtracted to obtain the
" eflfective " mean pressure.

In the case of isothermal gas expansion, n. = 1 oi pv= b, and the

integration for work done during expansion is

Pi

Pi
W = 6[log.«^ =2-3pi«i logio ^ = 2-3i>ifi logm

and including the work during admission

W,=m]l + 2-3 1ogio^j}-

The ratio of mean to initial pressure is therefore

2^ = ^i{l + 2-31og,„^4-

111. Graphic Construction for Indicator Diagrams.—Tn fig.

25 the upper curve is a common hyperbola or curve of reciprocals,

/DOC V

and is the gas isothermal. The lower is drawn to the formula

p = 6t)-i''i. The product pt) is the same at all points of the upper

curve, and, therefore, at all points equals ^jWj. Therefore for the
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point 2 on the lower curve, the horizontal strip of area rafined

over equals (pjWj —P'f^) > ^^^ ^^i^ divided by m - 1 = '2, i.e.,

multiplied by 5, equals the work done under the lower curve

during the expansion from 1 to 2.

The mean pressure, including the admission period, therefore,

equals 5 times the height of the strip rafined over plus the height

to the upper edge of the same strip.

The gradient of the curve p = bv''^ is negative, and equals

p' = -nhv'^'^= —n£-. Therefore m= »'x — omitting the mmiis
V P

sign which only indicates that the forward slope is downwards.

But if T be the subtangent, then p' = ^. Therefore we find

V IT
ra==-, and -=— -. Thus in investigating actual indicator

i n— 1 w -

T

cards taken from engines or compressing pumps, at each point of

the expansion curve at which a fair tangent can be accurately

drawn, the value of the index n can be found by measuring the

ratio of v to T. Also in finding the mean pressure by adding to

the height of the upper edge of the rafined strip of fig. 25 the

depth of this strip divided by {n - 1), this division can be per-

formed very easily by an evident graphic construction, since

1 ^ T
n-\ v-T

Conversely, in constructing theoretical indicator diagrams, when
a few points of the curve have been calculated, it much assists in the

fair drawing in of the curve to draw the tangents at these points,

which can easily be done by setting oif for each point T =—
n

If an oblique line be drawn at a tangent of inclination n to the

vertical axis (it is 'drawn dotted in fig. 25)j then at each v the

height of this line will give the corresponding T. In fact, by this

construction the whole curve may be accurately drawn out from
point to point by drawing a connected chain of short tangents

whose direction is at each point obtained in this way ; the accuracy

of the construction being very considerable if care be taken that

each short tangent length shall stretch equally behind and in front

of the point at which its direction is found by plotting T. By
this construction the labour of logarithmic calculation of the

heights of a series of points is rendered unnecessary.*

112. Sin-^a; and {r^ - x^)-^.—ln § 74 it was found that the angle-

gradient of a sine is the cosine, and that of the cosine minus the

* See Appendix E for further information concerning this class of curve,
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sine. Tliat is, if a be the angle and s its sine, oi sin a = s ; then
since cos^o =1 - s^, we have

|? = (l-.2)i.
da

When the angle is measiwed by its sine it is symbolically ex-

pressed as sin" ^s=" the angle whose sine is s." Using this nota-

tion, and taking the reciprocal of the above ; i.e., taking the co-

gradient or the " sine-gradient of the angle," we have

d sin'^s 1

.ds (l-«2)».

From this we deduce the more general result

d
I

a sin
J I

ds (r^ - s*)*

where a and r are constants.

The corresponding integrations are, when x instead of s is used

to indicate the variable,

/;

a dx .
"'« _,

^a sin --HG

=C - a cos - .*
r

The two angles having the same fraction for sine and cosine re-

spectively are complementary ; so that these two forms of the

integral only differ in the integration constants (C -G = -~-\ and

in the sign of the variable parts.

The sine of an angle cannot be greater than -I- 1 nor less than
- 1. These integration formulse would have, therefore, no
meaning in cases in which x>r or x< -r. These limits corre-

spond with those within which (r^ - x^)^ remains real, because the

square root of a negative quantity is " impossible " or " imaginary."

If (r^ - a;^)* arises from any actual physical problem, such a prob-

lem can never throughout the whole actual range of x make
x>r.

113. (1 - a!^)! integrated or Area of Circular Zone.—In § 59
it was shown that the area of a sector of a circle equals Ir^a. The

* See Classified List, III. B. 6 and 5.
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angle may be expressed in terms of its sine as in last article.

If s be the sine, we have
Sectorial area = |r^ sin 'h.

In fig. 1 3 this is the area NaO ; in which figure the length as

measures rs of the present article, and ae = r cos a = r^l - s^ of

the present article. The triangular area aOc, therefore, equals

^r's^l - s^. Add this to the above sectorial area ; the sum is the

area ONac. This area may be taken as made up of a large

number of narrow strips parallel to ON, the height of each of

which would be r cos a = r^l -s^, while the horizontal width
would be r.ds. The area OJSTac is, therefore, the integral of this

narrow strip of area from a = o to a = a, which hmits correspond
to from s = to « = s. Thus

jrjl^ '^•rds = r^ Ul-sHs = ^h^jY^ + ^r^ sin -i«

or

Twice this is the area of a circular zone lying between a diameter
and a parallel at the height s from the diameter, the radius being
assumed 1 in the last equation.

Here, again, s cannot range outside the limits ± 1.

114. x{r^-x')'i integrated.—The function x{r^-x^)-i may be
looked on as the sine divided by the cosine, i.e., the tangent of an
angle, see fig. 13, while dx is the increment of the sine. The
increment of the sine multiplied by the tangent evidently equals
the decrement of the cosine, and accordingly the integral is minus
the cosine, or - (r^ - x^)i.i

115. (a;2 + ,.2)-i integrated.—The function {x^±r^)-i is more
diflScult to deal with. Let X represent any function of x, and
multiply and divide its reciprocal by (» + X) ; thus :

—

[ dx / 1 x + X^ f X^
Jx=ir^Tx'^*'=j^Tx'^^

= C + loge(a; + X)ifX' = |-.

The condition X' = —— = ==- gives xdx= XdX
dx X

* See Classified List, III. B. 9.

+ See Classified List, III. B. 7. Note also that, since a;= -^—(r^-sfi)
dx

therefore !e{r' - !»'')~J can be recognised directly, by § 84, to be the a-gradient

of -(,r'-x^)i.
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or integrating

a!2 + A; = X2orX = (a;2 + A;)l

where the integration constant k may be either + or - . Writing
4= +r*, we have

P^j = C + log,{a: + (:«'>±r')n*

Here, if k is negative, the differential is " imaginary " and cannot

occur in any physical problem except for values of x greater

than J -k.

116. x-\r'^-x^)-^ int^rated.—The integral of a;-'(»-2 - a!2)-J is

found most easily by substituting -^ for x. Thus

Therefore

r dx ^1 C dx _ 1 r dK

= C'-hog,{x+(x^-i,y}by§115

=c-hog/-±(r!z^*.t
r rx

117. Log a; integrated.—The integral of the logarithm of a

variable number N is found by help of the formula of reduction

in § 80 and by § 98, thus :—

J
log, NdN =N logj N - log6 e j" I dN + C

= N{log,N-log,e} + C.

logje is the "modulus" of the system of logarithms whose base is

b, and for the decimal system is 0'4343 nearly. Therefore,

j log.„ NrfN = N{log,„ N - -4343} + C . J

* See Classified List, III. B. 6, 3, and 4.

+ See Classified List, III. B. 13 and 10.

t See Classified List, IV. 4.
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118. Moment and Centre of Area of Circular Zone.—^With

the notation already used, we saw in § 113 that a narrow strip of

the area of a semicircle is 2r'{l -s^^ds. The distance of this strip'

from the diameter from which the angle and its sine are measured
is rs, and the product of the area by this distance is the moment
of the strip-area round this diameter. This is 2A(1 - s'')ids, in

which r is a constant while s varies. Since s= - 4--^
, the

as
integral moment of all the strips for a zone between the diameter
and a parallel rs away from it is easy to find. Calling (1 - s^) by
letter S, we find

Integral moment = 2r3 |s(l -s^)ids

(SWS

= -irm
= |r3{l-(l-s2)«}

when taken from lower limit s = or S = 1.

From this is deduced by dividing by the area of the zone

;

Distance of centre of area of zone from diameter

^%(l-«2)i + sin-is'

For the whole half circle, sin"'s becomes a right angle or —
2 ;

while s=l and (l-s^) = 0. Therefore the centre of area of a
semicircle is distant from the centre of the circle by

1 4
%r.— =-=—r='4244»-.

IT OTT
"2

The moment of the whole semicircular area round the diameter
is |/-^-

The integration performed here is a geometrical illustration or
proof of the general integral of x{l -x^)^.*

119. (r^ + x^y- integrated.—In § 78 it was found that the
angle-gradient of the tangent equals the square of the reciprocal of

the cosine. Eemembering that

COS^a = ^j———=-
1 -1- tan^o

* See Classified List, III. B. 9.
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we find

, d tan a

1 + tan^a

"

Call tano=<, and therefore a = i3,n'H; we then obtain the

integration

\da = a^\,9.n'H + C *
h'h' I'

Here t is essentially a number or pure ratio, and it may vary from
- 00 to + 00 . If , in order to make the formula of more general

apphcation, we introduce a constant r^ as follows, then t may be

any + or - physical quantity, but t and r must be of the same
kind. Then, since

<D.

h

dt r

dt 1 . _it _ .= _tan '—hC.t
f ,.2 + f2 ,. ,.

120. {r^-x^y^ integrated.—Since {r^ - x^) = {r + x) (r - x), we
find easily

1 ^1/1 1 \

r^ - x^ 2r\r + x r-xj

and therefore this function can be integrated by help of § 106. J

121. Hyperbolic Functions and their Integrals.—The func-

tions \(e' + er'') and \{^ -e'') enter largely into the geometry of the

hyperbola and of the catenary, as weU as into the investigation of

several important stress and kinetic problems. From the origin

of their utilisation by mathematicians they are called hyperbolic

functions, and from certain useful analogies between the geometry

of the hyperbola and that of the circle, the names sinh x and
cosh X are appKed to them.§ In § 96 we have already found the

^-gradient of e*. Using it, we obtain

^^- = ^{Ke' + «"')l=i(e'-e-^) = cosha;

and
d cosh X . , ^ , . ,—^~ ^i{e' + e-') = smh x .

* See Classified List, IIL A. 8. + See Classified List, III. A. 10.

t See Classified List, IIL A. 9. § See Classified List, V.
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Written as for integration these results are

I cosh xdx = sinh x

and

I sinh xdx = cosh x .

The integrals of other hyperbolic functions are equally easy to

find, and are tabulated in Section V. of the Classified Reference

List at the end of this iook.

CHAPTEE VI.

TRANSFORMATIONS AND REDUCTIONS.

122. Change of Derivative Variable,—From the fundamental
idea of X', the x-gradient of the function X, as explained in § 35,

we have in equations between increments or between integrals

dX. = X'dx
or

^ dXdx=^.

Now, it may be easier to find I =-,£^X than to find / Xdx, and it

amounts to the same thing. The former integration may be easier

if X' be capable of convenient expression in terms of X. This

transformation has been frequently employed already, as, for

instance, in §§ 119, 118, 116, etc., etc.

More generally, if /(X) be any function of X when X itself is a

function of x, it may facihtate the integration to substitute

j'^^^dXtOTJf{X)dx,

provided either that X' cancels out of the expression "h—^ or elseX
that X' is expressible in terms of X.

123. Substitution to clear of Koots.—A selection of such
transformations is given in Section II. G of the Classified List,

under the title of Substitutions, page 169.
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Thus in II. G. 4 we get rid of roots by taking

X = (ct + 6a;)^ . •. a; =5^ . •. K™= ^(X'' - a)"

and

Therefore

j(a + fo;)!'/*~&™+i j X«

= ^J(X--arX-'-'rfX;

a form which is dealt with later on in § 125 ; but which can be
integrated directly if m be an integer by expanding (X* - a)" by
the binomial theorem.

124. Quadratic Substitution.—Again, in II. G. 5, the function

/ (flKC^ + 6a! + c) is transformed so as to get rid of the second term
involving the first power of the variable. The proper substitution

may be arrived at thus : put

X = a! + f X'=l x= X-i.
Then

ax'' + bx + c = aX^-2a^X + a^ + bX-bi + c.

The two terms in the first power of X cancel if f be taken —
JiCt

and then the remaining three terms not involving X become

af2_6^ + c =— --- +c=—
ia 2a ia

, , , iao-b^= say ak where k= —. . . .

We have then the transformation

jfiax^ + bx + c)dx= a (/{X^ + k)dX

•4.1. V , * 1 ,
^C''^ - *^

(Tith X = a; + jr- and k= ~ -j-s

—

This transformation is used largely in dealing with quadratic

surds.*

125. Algebraico-Trigonometric Substitution.—If in this last

* See Classified List, III. B. 13, 14, 16, and Ig.
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expression k be positive so that its square root can be extracted,

i.e., if 4ac>6 with a and c both positive; then the above integra-

tion of, say, (a;2 + k) may be thrown into a trigonometrical form by
help of the substitution

X 1 yfciX = tan"iyj- or a; = fci tan X and :5^ =—-5^«*

'

X cos^X

In these terms

and therefore

a;2 + A;= A;tan2X + fc=
cos^X

//(.^ + .)<£.=/.*/33l^/(^).X.*

Other similar conversions of algebraic into trigonometrical in-

tegrations are detailed in the II. G. Section of the Classified List.

126. Interchange of Two Fimctions.—In § 87 was estab-

lished the transformation

I
XSdx =XH -

I
TUdx=XH - JH(«X

a special simple case of which, already stated in § 80, is S' = 1

andB = a;, or

ixdx^Xx- [x'xdx= Xx- jxdK.

This general formula may be useful when the function to be
integrated, viz. (XS'), is not as a whole directly integrable, but is,

however, capable of being split into two factors, one of which (S')

has its integral (H) directly recognisable.

127. Interchange of any number of Functions.—The opera-

tion may be extended to the integration of the product of any
number of functions of x according to the result of § 88 ; but
with the multiplication of the number of functions to be dealt

with, there is an increase in the complexity of the conditions

under which the formula may be useful, and, therefore, a decrease

of the probability or frequency of such usefulness.

Transformations, according to this rule, are called Integration
by Parts.

128. General Keduction in terms of Second Differential

Coefficient.—If /(X) be any function of X, and /'(X) its

X-gradient ; then, X' being the sc-gradient of X,

^J) = X'/'(X)by§84.

* See Classified List, II. G. 7.
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Also

"^ ~ '
(X')2 t^a;

•

Here is the a;-gradient of X', and is called the " second
ax

diflferential coeflBcient of X with respect to x," or, more simply,

the "second a:-gradient of X." It is concisely written X".

Using this notation (X") and applying § 126 we have

jf{^)dxJ-^^j^^^,X'dx

Here the given function is /'(X), and the supposition is that it is

directly integrable with respect to X, but not so with respect to x.

On this supposition the transformation will be of use if it is found

that-^i—^.X" is directly, or more easily, integrable with respect

to X.

129. General Reduction for X'.—If /'(X) = X% then /(X) =

; 80 that in this case the above formula would be
r+1

f X*"
In some cases this form may be preferable to I =r,.ciX, which

would be given by § 122.

130. General Keduction of ^"X''.—If in § 126 one of the two

functions whose product is to be integrated be a;" and the other

X', where m and r are any constant indices, the transformation

gives

hrx'dx=-—=^--Af hr+^X'-^dx.
J m + 1 m+ 1 J

If this latter quantity be not directly integrable, it may stUl be

capable of being further reduced by the application of other

formulas of transformation already explained, so as to finally

reduce it to a directly integrable form.

Such a formula is the base of certain Formulas of Reduction.
131. Conditions of Utility of Same.—The last formula given

is capable of repeated apphcation, provided that X' is proportional

either to some power of x or to some power of X, the right-hand
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integral then reducing to the same general form as the left-hand

one. In either case, or again in the case xX.' = a+ljX, it is not

difficult to prove that X must be of the form

X = a + te".

If /• be a positive integer, then X' can be expanded into a finite

series of powers of x, which when multiplied by *"' will give

another series of powers of x, each term of which can be integrated

separately ; so that in this case no need of the above reduction

formula will arise ; although in some cases its use may shorten the

work involved. But the formula is useful for repeated reductions

if r is negative or fractional.

Various cases of such uses are given in Section IX. of the Classi-

fied Reference List at the end.

132. Reduction of x'^(a + bx%

If X =a + haf, then

X' = «6a!''-i=-(X'-a)

and § 130 gives

r 3-"'+'X'' rn C
\x-^X'dx=—^- if-^ /a^-X-VX-aWa!
j m+ 1 m+ 1 J

^ '

= r - —1 Ix Xd3C+ — fx^X' Hx

.

m+l TO+1 J m+1 J

Here we have / x^X''dx on each side. Bringing these two terms

to one side, and dividing out by the sum of their numerical factors,

. /, ,
rn \ m+l+rn

VIZ. 1 -{ T I
= 5— ; we find

\ m+lj m+l

f
uTXrdx^ ^"75 +-^ (afX^-'dx;*m + l+7-n m+l + rn J

'

a formula of reduction by which in the integration the power of X
is reduced by 1, while that of x is left unchanged. The reduction
of the power of X is compensated for by the multiplication (outside

the sign of integration) by the factor a, which has the same " dimen-
sions " as X.

This formula can be used inversely to pass from af'X''"' to jc^X"",

that is, to increase the power of X by 1 without changing that
of x.

* See Classified List, IX. A. vi.
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If the other form of X', namely, nbx"'^, be used in this transfor-

mation, there results

log^YJclx = = . |a!"'+"X'-ya;:
J m+l m + lj

a formula of reduction by which, while the power of X is decreased

by 1, that of x is increased by n.

By the previous formula la;'"+"X''"^da! may be converted into a

quantity in terms of 1 ai^+^X^cZa;, and thus /a!"'X'' reduced to an in-

tegral in which the power of x is raised by n, while that of X is

left unaltered.

By similar transformations one can ring the changes among the

integrals of the following set of nine functions, any one of which
can be reduced to any other.

afn-^r+l
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(x^X'-dx =
'^7^'^

+ ^— (x'^Un - l)cx + na]X'-'dx

.

J m+l+nr m + l+nrj '^ '

135. Trigonometrical Eeductions.—If in the general formula

of § 126 the product XS' be equal to sin''a;, then we may split

this into the two factors sin a; and sin" ''a;, thus :

—

X = sin"-'a: X' = (n - 1) sin""''*! cos x

B' = sin a; B = - cos x

X'S = - (n - 1) sin''-''a; eos'a; = - (» - 1) sin''-'^a;(l - sin 'x)

= (n - 1) sia"a! - (w - 1) sia""^a;

.

Therefore

I
sin"ajc?a! = - sin""'a; cos a; - (« - 1) I wH'xdx + (n - 1 / sin""^<fa;

sin.""^a;cosa; n-\{ . ^ ,. ^= + |sm""m*
n n ]

by adding together on the left-hand side the two terms in I AvPxdx

and dividing by the sum of their coeificients, namely, l + (w-l) = ra.

136. Trigonometrical Reductions.—Since by § 78 the angle-

gradient of the tangent is the reciprocal of the square of the cosine,

and since dx= -^ , we have

dx= cos^a!rf(tan a;) = (1 - siD.^x)d(ta,n x)

and, therefore,

f f tan""ia: f

I
tan^'^xdx = j tan""%(l - sin2a;)£^(tan x) =——^j / tan''a;£Za;

.

Or, rearranging,

I ta,n''xdx=——
^j

I tan" "^az^a;.

By either the process adopted in this article or that of last

article, the various trigonometrical formulae of reduction are

established which are set forth in order in Section IX. B. 1 to 9

of the Classified Reference List at the end of this book. In each

case the reduction changes the index by 2, which change results

from the substitution sin^a; = 1 - cos^a;.

* See Classified List, IX. B. 1.
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If n the index to be reduced be an even integer, a repetition of

the reduction will finally bring down the integral to the form

I dx, whose integral is a:. If m be odd, the finally reduced integral

will be either I sin xdx or I cos xdx or I tan oedx, etc., etc., all of

which have already been demonstrated.

137. Trigonometrico-Algebraic Substitution. — If in these

trigonometrical reductions n is fractional, then since dx =^ and

- — =cosa;, etc., etc., we may convert the formula into that of

§ 132 and IX. A. 1 of the Olasstfled List, thus :

—

/
. „ , /'sill"* ,, . V f sin"a; ,, . ,

I sin''xdx= d(sina:)= yr: ^-s-a a(sma;)
J J coBx ^ ' 1 (l-sinV)' ^ '

X"(l - X2)-*dX/^

in which X stands for sin x.

Similarly

/
. „ „ , /sin"a;(l - sin^a;)" ,, . ,

j sm-a; cos^xdx = j—jX^-^^__
_ d{sirx x)

= fx''(l-X2)^rfX.

138. Composite Trigonometrical Reduction.—From the ele-

mentary formulae for the sine and cosine of the sum of two angles,

in terms of the sines and cosines of these angles, we may write

:

Since p = (p - 1) + 1

sin^a; = sin (p - 1) a; . cos a; + cos (p - 1) a; sin x.

cospx= cos (^ - 1) a; . cos a; - sin (p - 1) a; . sin K

.

Therefore integrals of (sin*"a; . sin^a;), and (sin*"a; . cos^a;), and
(cos*"a; . sin pa;) and (cos*''a: . cosjsa;) may, by repeated application

of the above formulae, be reduced to series of integrals of the form
(sin±"a; cos^^a;), provided p be an integer. For these latter forms,

see Classifled Reference hist, IX. B. 5-8.
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CHAPTEE VII.

SUCCESSIVE DIFFERENTIATION AND MULTIPLE INTEGRATION.

139. The Second a^Gradient.—In fig. 6 we have the area under-

neath the curve measured between two vertical ordinates called X,

and the z-gradient of X, or X', is the vertical ordinate to the

curve. The slope of this curve at any point is thus the a;-gradient

of X', or the jB-gradient of the a^gradient of X. This is called the

" Second Differential Coefflcient of X with respect to x" or the

" Second iB-gradient of X." It is written either

In fig. 5 the vertical ordinate is X, and the gradient of the curve

is therefore X'. Therefore, in this graphic representation the

second a^gradient of X is the rate at which the gradient of the

curve changes with advance along the avaxis. If the gradient of

the curve increases with x, the diagram Kne curves upwards and
X" is positive; if the gradient decreases in the same direction

there is downward curvature, and X" is negative. The possible

variations of sign of X" are shown on fig. 3. If there be no
curvature, i.e., if the diagram line be straight, then X" is zero.

Although X" is greater the . sharper the curvature, still X" is not

the measure of the curvature. The relation between X" and the

curvature is explained in § 145 below.

140. Increment of Gradient.—In fig. 5 if the gradient increase

in the horizontal length Sx by (X'j - X'j) = 8X', then this divided by
Sx is the average rate of change of X' throughout the length Sx. If

the two points be close together, then this is the actual rate of

change of X' between these two contiguous points ; that is, it is the

value of X" at this part of the curve. That is, when Sx is small,

?^' = X"orSX' = X"Sa;.
8a;

141. Second Increment.—If 8a: be small, then from the point

(ajj - ^Sx) to the point (ajj + |8a;), the curve of fig. 5 rises a height

X'jSa;, and from the point (x^ + ^Sx)=(x^ - !&) to the point

(x^ + ^Sx), the rise of the curve is

X'^Sx = (X'l + 8X')Sa;= {X\ + X"8a;)8a;

.

Thus while the rise is X'jSa; through the small stretch 8a; lying
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equally on either side of the point 1, it is greater than this hy
X"(89;)2 through the next equal small stretch Sx lying equally on
either side of the point 2. The horizontal distance between these

two points is 8a;. Thus an advance of Sx has resulted in an
increase of rise per Sa; equal to X"{Sxy. The excess of the second
of these rises over the first is called the second increment or

second difference of X. It might be written S(SX), but the

usual and neater symbol is 8^X. Dividing.by (Sa;)^ we have

82X_ 8X'

XSxf~ Sx-

Stated in words this reads :

—

The second a^gradient of X equals the second increment of X
per 8a; per 8a; divided by the square of Sa;.

It must be remembered that this equation has been derived only

on the supposition that 8a; is taken very small. The other written

d^X S^X
symbol for X", namely, - -5- resembles in form -,-^-^g with d sub-

dx' (9*)
stituted for 8. It is sometimes stated that dx is the symbol for Sx

when 8a; becomes " infinitely small," and that when 8a; becomes
S2"Y" /72'V'

"infinitely smaU" ^j-r, equals -5— ; but the present writer pre-

fers to avoid the use of phraseology which suggests reference to

quantities which do not exist, and reasoning about which must,

therefore, be quite unmeaning.
It should be noted that 8^X is of the same kind and dimensions

as X, and that Sa; is of the same kind and dimensions as a;; so that

X" is of the kind and dimensions of X/a;^.

142. Integration of Second Increment.—From the equation

82X = X"(8a;)2

we obtain the other

Integral of S^X = Integral of a corresponding continuous

series of consecutive values of {X"(8a;)^}.

Eemembering the meaning of 8^X, it is evident that its integral

from one definite point 1 or a;j to any other point x equals

8X at X - 8X at x-^^

= say 8X-(8X)i

these two increments being taken for equal small 8a;'s. Both these

increments are very small ; their difference is minutely small, and.
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therefore, this integration as it stands can be of no practical use as

a iinal result. But let us integrate again this minutely small

diflference of increments by taking all the successive values of 8X
from a!j up to point x and subtracting the constant (8X)j from
each, and then let us add all the differences. The result is

(by the distributive law in integration, see § 83) the same as

I
8X - I (8X)i. In the latter symbol, since (8X)i has a constant

value, we have simply to multiply this by the number of them to

be added, which number is
~

' j so that
oX

i:
(8X)i =^ . (SX)i ^{x- X,) (g)^= {X - x,)X\

.

In fig. 5 X'j is the gradient at the point 1, and this last, therefore,

equals the rise of the tangent at the point 1 in the horizontal

stretch (x - x^). Also / 8X is the whole rise of the curve through

this same stretch, or (X - Xj) Therefore, this double integration

of 82X, the shorthand symbol for which is / / cP'K, gives the result

r rd^X = (K-X.^)-{x-x^)X\

= X-a;X'i-(Xi-a;iX'i)

and this is evidently measured in its graphic representation (see

fig. 26) by the height of the curve above its tangent at point 1.

143. Graphic Delineation.—In the process of single integration

we found one constant introduced. In this double integration

there are two introduced. In the above algebraic representation

they are - X\ and - (Xj - XjX.\).

On fig. 26 are clearly marked the graphic representations of these

two constants, the first being the gradient of the curve at point 1.

The lower limit is the same in both steps of this double integra-

tion, namely, the point 1. It is not necessarily so. In the first

step, the lower Umit may be the point 1, and this will give the

gradient-constant X\. In the second integration the lower limit

might be taken at some other point 2, and this would give

jJd^X = iX-X,)-{x-x,)X\

= X-xX\-(X,-x,X\)

leaving the one constant still minus the curve-gradient at 1, but
making now the second constant mimis the intercept upon the

F
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vertical axis cut off by a line through 2 parallel to the tangent

at 1. Otherwise, the integral is now the height of the curve

above the liae drawn through 2 parallel to the tangent at 1.
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increase to (a + Sa) in the arc-length Sa, whose horizontal projec-

tion is Sx. The curvature is the reciprocal of . the radius of curva-

ture, or the " arc-gradient of the angle," i.e., -r- . Since Sa is

smaU, it equals tan (8a), and tan (8a) can be calculated by the

ordinary trigonometrical rule from X' and (X' + 8X') the tangents

of a and (a H- 8a) ; thus,

8a = tan (8a) = /^/^/^g^^^y = JTjrx^
nearly, when Zx is small.

Also the arc-length is

8a= jW+W? = hx JT+W.
Therefore the curvature is, p being the radius of curvature,

1_(^^8X' 1 _ X"
p~da Zx

'

{l-(-X'2}5 {l-t-X'2}!"

if the radius of curvature be easily found by any direct process,

the inverse form of the above relation may be useful ; namely,

X" = -{l-l-X'n*.
P

If T be the sub tangent on the cc-axis, and if (see fig. 27) the

T -»i

Fig. 27.

intercept on the tangent between this axis and the touching point
y

be called E ; then since W = 1L'^ + T^ and X' = ™-
, therefore
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and

i+x'^=5

^(sr
If the radius of curvature be known— (a practised draughtsman

can always find it with the greatest accuracy in two or three

seconds by one or two trials with the dividers)—the construction

shown in fig. 27 affords a very easy graphic method of finding X",

measiu^ed to scale, according to the above formula -
( s; ) • Those

acquainted with the elements of Graphic Calculation will readily

follow the construction from the marking of the figure without

further explanation.

146. Harmonic Function of Sines and Cosines.—As an

illustration of these ideas, take an ordinary harmonic curve. Let

h be the height of the curve at horizontal ordinate I ; let rj, rj and

m be constants ; and let

h = r^ sin ml + j-j cos ml

then

h' = mr^ cos rrd - mr^ sin ml

and

h" = —m^ (rj sin ml + r^ cos mX) = -.m% .

The student should write out these results for the three simplified

oases—(1) rj — r2 = r; (2) r^^O; and (3) ri = 0. In aU cases he

will find that h" = - mVi.

147. Deflection of a beam.—If a beam be uniformly loaded

with a load w per ft. run and have a vertical supporting force R
applied at one end, the bending moment on the section distant I

from this end of the beam is

M = RZ-|wZ2.

The bending moment diagram (ordinates M and I) is therefore

a parabola. At any point I the gradient of the curve is

M' = E-«oZ
= R at the end where E acts

= at section where wl equals R

between which points it varies uniformly.
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The second ^-gradient of M is

M"= -w
and is thus constant.

It is easily shown that, in a beam subjected to elastic bending

M
only, the curvature of the (originally straight) axis equals ==,

where I is the "area-moment of inertia" of the section, and E is the

modulus of elasticity.

In the case of beams so stiff that the bending under safe loads

is very small—which is the only case of practical interest to

engineers—it is sufficiently accurate to take the curvature as the

second Z-gradient of the deflection, neglecting the division by the

4 power of 1 plus the square of the first Z-gradient.

Thus if A be the deflection perpendicular to Z, then the second

Z-gradient of A or

M 1
A " = == =^ (RZ - ^wP) in above case

and

Tn , ,, ,,„ 1 [11,-r,, , ,ov „o if both E and I areA=j A"<iZ2 =
gjj

{ni-\wP)dP
constant along Z:

_ j_ {(-fff A - , R72 _ mi\rll ^ ^ '] defines the gradient of
""
EI j

\-^^ ^ 1 + 2 6 ) the line from which the de-

flection is to be measured

:

A a. A' /j./'R/s WtAA '"'here A^ defines the posi-
- ^2 + '^

i'' + l^-g* - 2^* yj;j tion of the line from which
the deflection is measured.

At any point Z the gradient is

A'=A', + (lz^-|Z3)Jj.

If the deflection be measured from a line parallel to the bent

axis at its point where wl = R, then A ' must equal at this point,

and this gives A 'j = - opH^ H> further, we measure from a line

drawn through the ends of the axis so as to make the end de-

flections zero, then A must be zero at Z = 0, which gives A j = 0.

Inserting these values of the two constants, we find

^=m{-i^^^¥-H
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This equals zero when 1 = ; and, when ml = R, which occurs at the

centre of a uniformly loaded heam freely supported at both ends,

it equals

B* / , , , ,\ 5 B«

^'=~3EI«8V * V 24EIw8-

.If the span be L, the whole load = wL =W and R = ^wh, and

5_wIJ 5_ WL8
^"~ 384 EI ~ 384 EI

*

148. Double Integration of Sine and Cosine Function.—
In § 146 we find

h"=-m%

and, comparing this with the original equation, we see that the

general result of a double integration from this relation is

A = rJ sin ml + r^ cos ml

where rj and r^ are the two constants introduced by integration.

But if the second-gradient equation be of the other form

h" = - rrfi(r^ sin ml + r^ cos ml)

the result of a double integration is not the same : it is more
general, namely,

/i = rj sin ?w?+ r^ cos ml+ G-J, + Cj

where Cj and C2 are the two integration constants.

The former {h" = - m%) is a special case of the latter more general

rule, in which special case Cj = = Cj ; and this specialty gives rise

to the relation h" = - m^h, which relation does not hold good in

general.

In the general formula the constant C^ gives a choice of gradient

of the line from which h is to be measured; while Cg gives a

further choice of level at which to draw this datum line. In the

special case this level must be such as to make h = r2 when Z =
and the gradient of the datiun line must be zero.

149. Exponential Function.—If X = 6', then by § 95

J" X X
X' = -^ = Y aid therefore X" = =2

.

If X = 6"" where m is any constant, either positive or negative,

whole or fractional ; then

X' = 5XandX" =@X.
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This case is the counterpart of that in the last article where

t)
is essentially positive.

150. Product and ftuotient of two or more a>-runctions.—If

L and M are functions of x, and if X = LM, the first and second

a^gradients of X are

X' = L'M + LM'and
..X" = L"M + 2L'M' + LM".

In the case of M = a;, then M' = 1 and M" = ;

therefore X" = L"a; + 2L'.

Similarly, if X be the product of three K-functions, L, M, N, then

X" is the sum of a series of terms each of which contains the

three letters L M and N, and in each term the number of dashes

indicating the number of differentiations will be 2. Dividing by
X = LMN, the result may be written

X;; L" . M" .
W

.
JHW . L'N' .

WW\
X 'l"*" M'^N "^^VLM"*" LN"*" MnJ

a form analogous to that of § 92 ; and which may be extended to

the product of any number of factors.

151. Third and Lower a^Gradients and Increments.—The
avgradient of the second a;-gradient of X is the third a;-gradient,

and the a;-gradient of this again is the fourth x-gradient ; and so

on through any number of differentiations.

These successive gradients are written either X'", X''', X'', or

else
-J^,

etc.

Similarly, if two successive values of the second increment of X
per Sa; per hx be taken at two places 8a; apart, the difference between

them is called the third increment of X per Sa; per 8a; per Sa;.

This is written S'X ; and if it be divided by the cube of hi, it is

S^X d^'K.

easy to show that y^j = X'" = -3-5 when 8a; is very small. This is

(i'X
not a truism. The symbol -=-j ought not to be considered

capable of being split into two parts, one of which, the numerator,

(PX, is the value of 8'X when Zx is very small Nevertheless, it is

correct to write for any very small 8a;

8'X = X"'(8a:)»= ^(8a;)'.
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Again, if 8"X be the re"" increment, and -—^ the w"" gradient,

then for any very small Sx it is correct to write

152. Rational Integral a>^Functions.—If X = Itx^, then

X' = Ama;"-! ; X" = km{m - l)af-^

and

f^ = km(m - l)(w - 2)- - - -(w + 1 - ra)a;'"-'

.

If m be a positive integer, the m^ gradient of fce"" will bo a

constant; ndmely,

^= km(m-l)(m-2)..-.3-2-l=km\

Thus the (m + 1)"" gradient of kx™ is zero, as is also every lower

gradient, if w be a positive integer.

But if m be fractional, then the successive gradients pass into

negative powers of x, so that, in this case, a lower gradient may
have a very large value for very small values of x. Thus, if

5 15 15X = x'; then, X' = y'-^^> ^" = -j-^j and X'" = -j ;
giving very large

values of X'" for very small values of x.

If X = ocb" + bx'^~^ H + kx, and if m be an integer, then at

each successive differentiation one term disappears, and the m""

gradient is again a constant, viz., am I Thus any terms in the above

function, except the first, might be omitted without altering the m""

gradient. There are, therefore, (m- 1)! different functions of the

above type which give the same m"' gradient
;
(m - 2)! different ones

which give the {m - l)"" gradient the same in all ; and so forth,

the differences corresponding with those arising from putting any
except the first of the constant factors in the above general formula

equal to zero.

153. Lower ^-Gradient of Sine and Exponential Functions.—
The successive gradients of some functions have a re-entrant or

repeating character. For instance,

X = l\ sinmx + k^ cos mx

X"= -mFX
.: X'^ = »w*X

.-. X^= -m^X, etc., etc.
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Again, see § 95,

.•.x"=(4yx

and this is true whether |8 be + or - .
*

154. General Multiple Integration.—If X', X", X'", X'^ etc.,

are the successive K-gradients of some function X, and if we start

with a knowledge of the lowest of these gradients only, and wish
to work upwards to a knowledge of the higher gradients and of X
by repeated integration ; we find

/'

where C3 is the constant of integration. Then

j ix'^dx^ = lx"'dx + jc^dx = X" + C3» + Cj

and

and
r

r

I c
X'^(ia;3 = X' + ^x^ + G^x + C^

'x'-c?x*= X + ^t^ + ^x^ + Cia;+ C„

.

This result might perhaps be more clearly understood when ex-

pressed as follows :—X" may be written (X''' + 0). Then the pro-

position is that the fourth integral of the known function X'^ is

the function X whose fourth a:-gradient is X", plus the function

(^CgiB^ + h^.^^ + CjX + Cq) whose fourth K-gradient is 0.

If there were n integrations, there would be {n + 1) terms in the

result, one of which would be a constant, and (n - 1) of which
would be multiples of the first (n - 1) integral' powers of x. § 152

illustrates one special example of this general proposition.

The constants are to be determined from the " limiting condi-

tions." The number of limiting conditions, a knowledge of which
is necessary to definitely solve the problem, is the same as the num-
ber of "arbitrary constants" C appearing in the general solution.

* See Appendix F.
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In the above case Cj might be determined from a knowledge of

one particular value of X", and then Cj from that of one particular

gradient X', the remaining Cq being found from one particular

value of X being given.

155. General Multiple Integration.—If in § 126 we write I Xdx

instead of X, and therefore X instead of X', we obtain

f{3'J Xdx}dx = 3 jxdx - jnxdx

.

If in this formula the a;-function be a; itself, so that E' = 1, there

results

("Xdx^ = X jXdx - jxXdx

which enables two possibly easy single integrations to be substituted

for one double integration which may be otherwise impracticably

difficult.

Conversely, a given function {xX") may be difficult to integrate

once, while the part of it X" is recognised as the second a;-gradient

of a known function X, and then the form

lxX"dx= xX'- rX"dx^

= xX'-X
may be useful.

156. Keduction Formulae.—From § 150 we have

^,(.X)=^X" + 2X'

from which it follows that

xX = rxX"dx^ + 2 ("x'dx^

.

In this substitute X for X', and therefore X' for X", and

I Xdx for X ; there results then

rXdx^ = \x jXdx - J ("xX'dx^

=^ I
Xdx - ^ I X dX dx.
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Again, if in. the same formula there be substituted X for X", and

therefore I Xdx for X' and / Xdx^ for X, the result appears as

/m rii m
Xdx^ = ^\ Xc?a;2-jl xXdx^ *

157. Graphic Diagram of Double Integration.—The meaning
of double integration can be very easily represented graphically.

In fig, 5 the slope of the curve is X' and the height of the curve

is X, the first integral of X' by dx. Thus (XSjc) or the strip of area

between two contiguous verticals under the curve is the increment of

the second integral of X' by dx. Thus the area under the curve in-

cluded between two given limiting verticals is their second integral, or

Area under curve = / Xfda^.=P
This graphic representation will help the student to perceive

clearly that this integral is not the sum of a number of terms,

each of which is the square of Sx multiphed by the slope X'. The
square of any one Sx multiplied by the coincident slope X' would
be the rectangle of base 8a; and height 8X, because X'Sx — SX..

The sum of the series of such rectangular areas stretching between
given limits on the curve is not any definite area, and it can be
made as small as desired by taking the 8a;'s sufficiently small. But
this small rectangular area (8a;.8X) is easily recognised to be the

second increment of the area under the curve. The first diflerence

is the area of the whole vertical strip between contiguous verticals.

The difference between two such successive narrow strips (each

being taken the same width 8a;) is the above (Sa;.8X). Thus as

X.'dx^ is this second difference which equals X'(8a!)2, there is

nothing illegitimate in considering the symbol dx^ in I X.'dx^ to

represent the value of (Sx)^ when 8a; is taken minutely small.

1S8. Graphic Diagram of Treble Integration.—The idea of

treble integration may he similarly represented graphically.

If the various areas in fig. 5 under the curve measured from any
given lower limit up to the various vertical ordinates at the successive

values of x, be looked upon as projections or plan-sections of a

solid, the successive sections for each x and the following (x + Sx)

being raised above the paper by the heights x and (x + Sx) ; then
mi

this volume is the true graphic representation of / H'da?, because

the increment of this volume, or the slice of volume lying between

* See Appendix G.
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two successive parallel sections Sx apart, is the section-area at the

middle of the thickness Sx multiplied by Sx. This section-area we

have seen in § 157 to be I X'dx^ ; and, therefore, the above inore-

ru na
ment of volume is I H'da?. The integral of this is / X!d3?.

If the lower limiting vertical ordinate of the area be at a! = 0,

then two of the side surfaces of the above integral volume are

planes normal to the paper of the diagram and passing through
the axes of x and X. A third side surface, namely, that passing

through the successive X edges (which are the various upper limiting

ordinates in the area integrals), is also a plane : it passes through
the X-axis and is inclined at 45° to the diagram paper. The
fourth side surface is in general curved. These four side surfaces,

three of which are flat, give to the Volumetric representation of

treble integration the general form of a quadrilateral pyramid.

The base of this pyramid is plane parallel to the diagram paper.

As a valuable exercise, the student should endeavour to obtain a

clear mental conception of the fact that X'(8a!)', the value of

which becomes ~K.'doi? when hx is minutely small, is the third

difference in the continuous increase with x of this pyramidal

volume.

CHAPTEE VIII.

INDEPENDENT VARIABLES.

159. Geometrical Illustration of Two Independent Variables.

—Hitherto there have been considered combinations of such

functions alone as are mutually dependent on each other. The
functions x, X, M, etc., have been such that no one of them can

change in size without the others concurrently, changing size.

In fig. 1, § 11, we have a vertical plane section of the surface of

a piece of undulating land. Suppose it to be a meridional or north

and south section. On it each distance measured northwards from
a given starting-point corresponds to a definite elevation of the

ground. If we take other meridional sections of the same piece of

country, this same northward co-ordinate will correspond with
other heights in these other sections. Thus, if h be used as a

general symbol to mean the height of the surface at any and every

point of it, then h depends not only on the northward co-ordinate
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or latitude, but also upon the westward co-ordinate or longitude.

If there be freedom to move anywhere over the surface, the two

co-ordinates of latitude and longitude may be varied independently

of each other, that is, a change in one does not necessitate any

change in the other.

Under such circumstances the elevation is said to be a function

of two independent variables.

160. Equation between Independent Increments.—In moving

from any point 1 to any other point 2, the elevation rises (or falls)

from say h-^ to h^. Let the latitudes, or northward ordinates, of

the two points be Wj and n^, an I the westward ordinates or

longitudes be w^ and Wj. Then the same change of elevation

would be effected by either of two pairs of motions ; namely, first,

a motion northwards («2 - Wj) without change of longitude, followed

by a motion (w^ - Wj) westwards without change of latitude ; or,

second, a motion (to^ - Wj) without change of n, followed by a

motion (v^ - «j) without change of to. This is true whether these

motions be large or small. Suppose them to be small, and further

suppose that there are no sudden breaks in the ground, that is,

that the change of elevation is continuous or gradual over the

whole surface. Call the small northward, westward, and vertical

movements by the symbols

TCj - »fi = 8w

Wj -
?*i
= Sw

h2 — h^ — Sh.

Then if the meridional northward slope of the ground, just north

of point 1, be called [~-) , the rise during the small northward

^ J
.Sn ; and if the westward slope

of the parallel of latitude through 2, just east of the point 2, be

^^ I , the rise during the small westward movement Sw

which, following the above, completes the motion to 2, wiU be

I =r-] •S'"- The sum of these two rises gives the whole of 8/*, or
\0W/2

»=©.-^-(a-^-
Here the two gradients are not gradients at the same point. If

Sg. 28 be a plan and two elevations of the small part of the surface



94 THE CALCULUS FOK ENGINEERS.

considered, they are the northward and westward gradients at i/j

and vj at the middle points of IN and N2 in the plan.

If now the passage from 1 to 2 be effected by passing through

W in fig. 28, and if f^\ and (^^^ be the westward and north-

WesT
£l.EVAriON

North
EL£VATI0MI

PLAN
Fio. 28.

ward slopes of the ground at oij and m^ ; then the same change of

elevation may be calculated thus,

Sh-
\dw/i \dnj

where the Sw and the 8w are also the same lengths as before, the

quadrilateral 1N2'W being a parallelogram.

(— )
and (— ) are the westward slopes on opposite sides of this

parallelogram ; they are the slopes of N2 and IW in the " North

Elevation." (— ) and (— J are the northward slopes upon the

other pair of opposite sides; they are the slopes of IN and W2 in

the " West Elevation."

Adding these two equations and dividing each side by 2 ; and,

further, calling the means between the gradients on the opposite

sides of the parallelogram by the symbols ^— and ^— ; we have
dn dw'

on ow
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On a continuous surface such as is here supposed, the above

arithmetic means are, with great accuracy, equal to the actual

gradients along the centre lines WjV^ and VjWg of the small rectangle

;

that is, the gradients at the centre of the short straight line 1 2.

161. Equation between Independent Gradients.—If the short

level length 1 2 be called Ss, so that 8n and 8w are the northward

and westward projections or components of 8s ; then we have, as

general truths, by dividing successively by Sn, Sw, and 8s,

8h^/dh\dh dh/dm\
Sn \dn/s dn dw'\dnjs

8h_/dh\ _^_hfdn\ dh

Sw \dw)g dn\dw/, dw

Sh_dk_dh /dn\\ dh /dw\

Jb ito'\dsJsds dn\ds

where the restrictive symbol ( )b indicates a ratio of increments

occurring concurrently along the special path s over the surface, an
element of which path is 1 2 or 8s ; while the ratios of increments

not marked with this symbol are pure northward and eastward

gradients, -rr- does not need to be marked, as its terms indicate
ds

plainly that it means the actual whole gradient of the ground
along the path s.

\dw/s \dn/a \dsjs \ds /i

are dififerent measures of the direction of the path s in plan ; the

first two are the tangents of the inclination of this path from the

west and from the north respectively ; the last two are the sines

of the same inclinations. These measures of its direction par-

ticularise the special path to which the equations apply. — and —
dn dw

have no connection with, and are quite independent of, the direc-

tion of this path s : they are the due north and due west gradients

at a point of the path, and depend upon the position of this point
in the field, but not upon the direction of the path at such point.

The gradients — and —- are called the " partial " differential
on ow

coefficients or gradients of h with respect to n and w.

(— ) is the ratio of rise to northward progress in travelling
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along the path s, and depends upon the direction of this path.

It is quite diiTerent from —' . In fig. 28 it, (
—

- ) , equals the tangent
on \dn/s

of inchnation of the line 1 2 to the horizontal base in the " West

Elevation " ; while — equals the tangent of inclination of line IN
on

to same base also in the " West Elevation."

Similarly,! 5— ) equals the tangent of inclination of 12 to the
\dwjt

horizontal base in the " North Elevation," while — is the tangent
ow

of inclination of line IW to same base also in the "North
Elevation."

162. Constraining Relation between Three Variables.—We
have above considered the ordinates n and w to any point of

the surface as mutually independent of each other, and h as

dependent upon ioth n and w. But we may equally well consider

to a function dependent on both n and h, while looking on n and h
as mutually independent of each other. Generally between the

three functions n, w, and h there is only one restrictive rela-

tional law established, leaving one degree of freedom of variation

among the three. If a second restrictive law be imposed upon the

relations between the three, this means that we are restricted to

some particular path, such as s, over the surface, and are no
longer free to take points all over the surface.

163. Equation of Contours.—The meridional section is such

a restricted path; the restriction being 8/0 = 0. The parallel of

latitude is another such restricted path ; the restriction in this case

being Sra = 0. A level contour line is a third example of such a

restricted path, the restriction being 8/i = 0. Therefore, if the

path s be a contour line, we have -^=0, and thus one form of
as

the equation giving the shape of a contour is

dh/dn\ dh/dw\ _
dn\ds ), 'dw\ds /,

or

tdn\ dh

\dsjg _ /dn\ _ dw

/dw\ \dw/s dh

'

\ds A dn

/dn\
Here {-r-j = tangent of northward bearing of contour from due
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west, and this is seen to equal minus tlie ratio of the due west
slope to the due north slope. The minus simply means that if

both these slopes are positive upward gradients, then the bearing

is south, not north, of due west. The steeper the west slope is in

comparison with the north slope, the more does the contour veer

round to the south.

The geometrical linear ordinates of the above illustration may
be taken as the graphic scaled representatives of any kinds of

measurable quantities related to each other in a similar manner.
164. General x, y, 'E{x,y) Nomenclature.—Let the two inde-

pendent variables be called x and y, and let the function dependent
on these be called 'E{x,y). Let also the rate of change of F(a!,y)

with x when y is kept constant be called YJ^xy), and its rate of

change with y when x is kept constant be called Yy{x,y).

Then the equations of § 161 are written

{F',(c«,2/)}=F>,2/)| + F>,2/)

where {S'J^xy)] is the rate of change of 'S{xy) with change of x
when the change of x is associated with a change of y in the ratio

indicated by -.^ ; this ratio -^ being any whatever, but the ratio
dx dx

inserted on the right hand being always the same as that involved

implicitly on the left hand.
165. Two Functions of Two Independent Variables.—Again,

if f{xy) be another similar function of x and y, then

fdFX^l
rdx,y) + Y,{x,y).%

dx

the brackets { } on the left meaning that the equation gives a

particular value of the f{xy) - gradient of F(a;^) ; namely, that

particular value obtaining along with change of y combined with

change of x in the ratio -^ inserted on the right hand.
dx

166. Applications to p, v, t and <^ Thermal Functions.—
An important example of the kind of relation described is that of

temperature, pressure, and specific volume of any one definite

substance. If t, p, and v indicate these, and if H^ indicate the

G
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pressure-gradient of the temperature with volume kept constant,

while t\ indicates the volume-gradient of the temperature at

constant pressure ; then for any changes 8p and 8w of the pressure

and volume, there results a temperature increment

For any change of thermal condition in which the volume-gradient

of the pressure is — the volume and pressure gradients of the
dv

temperature are

and

Or again, if p', and p',, he the temperature and volume gradients

of the pressure with volume and temperature respectively kept
constant, then for any change defined by a volume-gradient of

temperature — , the temperature and volume gradients of the

pressure are

and

{dp\ , , dv

[iy^'^'p^di

_, dt

\dv)=P''dv^P-

Here p'„ is the slope of the " isothermal " on the p,v diagram

;

p', is the slope of the " isometric " on the p,t diagram ; t\ is the

slope of the " isobaric " on the t,v diagram, etc., etc.

What is called "Entropy," usually symbolised by
<t>,

is most
simply defined by the equation of its increment

and this, combined with the above equations, gives most of the
mathematical formulas of thermodynamics.

167. K-Gradient of {xy).—In fig. 17, § 80, the rectangular area
between the two axes and the two co-ordinates x and X was
taken as a function of these co-ordinates, and differentiated with
respect to them. The problem was there considered in reference
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to the ordinates to the particular curve shown in fig. 17, which
may be regarded as similar to the particular curve s of § 161. If

in fig. 17 we now regard x and X as the ordinates to any point

in the whole field of the figure, they will then be independent

variables. It will now be better to name the vertical ordinate y,

as X is throughout this book used to indicate a function dependent
on X. The area (xy) will be a function of these two independent

variables. Applying the law of § 161 to this function, we have

{ -3^ f
= -V^with y constant + 4P^with x constant x -^

{ ax I ox oy dx
dy ,

where the bracket { } indicates that the gradient is taken with
concurrent change of x and y in the ratio given by y' on the right

side. If the given y' be the a;-gradient of the curve drawn in fig.

17, there is here reproduced the law of § 80, which is thus shown
to be simply a particular ease of a more general law, namely, that

of § 161.

168. Definite Integral of runction of Independent Variables.

—The equation of § 161 gives the increment of rise in level SA from
any point of the surface to any other closely contiguous point.

The integration of this increment of rise gives the total rise from
one point to another point, near or distant, on the same surface.

Taken between definite limits, this integral means the difference

of level between two definite points on the surface. From any
lower limit n^w^ to any upper limit ii^w^ the definite integral

is(^2-/'i)-

The indefinite integral is a general expression giving the height

of the surface at any and every point measured from any con-

venient datum level.

169. Definite Integral of Function of Independent Variables.
—In integrating from point 1 to point 2 (distant from each other),

the integration may be followed out along a great variety of paths,

the only condition a suitable path has to fulfil being that it must
pass through both points 1 and 2. The path may be curved in

any fashion, or be zigzagged in any regular or irregular manner.

The integration along every such path will evidently give the

same result. If in fig. 28 the points 1 and 2 be distant from each

other, the integration might first follow the directly north path

IN, and then the directly west path N2. During the first part

8w would be continuously zero, and the integration would extend

from latitude n-^ to latitude n^, keeping constantly to the longitude
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»Cj. During the second part, S« would be continuously zero. The
same result is obtained by integrating first from 1 to W at constant

latitude Wj, and then from W to 2 at constant longitude w^.

170. Equation between Differences of Integrals.—Incidentally

it may be noted that this gives, by converting the equation between

the sums of these pairs of rises into an equation between the

differences of the pairs of rises on opposite sides of the rectangle,

mo

the left-hand expression meaning the difference between two
integrations from latitude Wj to latitude Wji carried out along the

meridians of longitude w^ and tOj ; while the right-hand similarly

means the difference between two integrations each aloiig a parallel

of latitude and each between the same Umits of longitude.

171. Indefinite Integral.

—

The indefinite integral h may be

obtained by first integrating along any meridian up to an undefined

point, and then from that same point along a parallel of latitude

an indefinite distance; or the integration along the parallel of

latitude may be effected first, to be followed by the meridional

integration. In either case the second integration must start

from the same point as that at which the first finishes, this

point, however, being any whatever.

172. Independent Functional Integration Constants. —
Although n and w may be varied quite independently, there is a

relation between the law of the meridional section and that of the

section of constant latitude which deserves notice. The equation

of the meridional section, in which n is the variable, changes from
section to section, i.e., changes with the longitude. This equation,

therefore, in general involves the longitude w. For any one such

section the value of w entering into it remains constant. Thus the

general expression for h may be taken as the sum of three terms,

thus :

—

^.= N-l-F(w,M))-)-W

where N is a function involving n but not w; W a function

involving w but not n ; and F(ra,Mi) is the sum of such terms as

involve both n and w. The partial gradient for any meridional

section is

| = N' + F>,^«)

W being a constant in this differentiation.
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The partial gradient for any section of equal latitude is

|= W' + F>,«).

These two formulEe exhibit clearly the necessary relation between

the two partial gradients. They differ, first, in N' and W, which

are respectively functions of n alone and of w alone, and between

which parts, therefore, there is complete independence; and,

secondly, in ¥\{nw) and YJjiw), which are different but not inde-

pendent, being necessarily related by the condition that they are

the partial gradients of the same fu^ction involving both variables.

173. Independent Functional Integration Constants. —
Written in terms of independent variables x, y, and ^ the integral

function of xij, these fprmulse become

X=X + F(a;,y) +Y

where X is a function of x only, and Y is a function of y only.

174. Complete Differentials.—In fig. 28 the slopes of the two
lines IW and N2 in the " North Elevation " give the westward
gradient at the two latitudes Mj and n^. These lines are drawn
parallel in fig. 28 because the points 1, 2 are close together, and
for a first degree of approximation the difference of slopes through

them may be neglected if the surface be continuous. If a second

degree of approximation to accuracy be considered ; that is, if we
investigate " second gradients," the difference between these two
westward gradients must be taken into account. It is evidently

dn\dwj

'

and the difference between the rise from N to 2 and the rise from
1 to W is

d_i'dh\

dnVdioJ
-j.8ra.Sw.

Similarly, the difference between the northward gradients "W2 and
IN as seen in the " West Elevation " of the same figure is

dw\dnj

'
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and the difference between the rise from W to 2 and the rise from

1 to N is

d /dh\d_/dh\

dw\ dn)
' Sw .Sn.

But by § 170 these differences equal each otlier. Cancelling out

the common product 8rt.8w, we have the equality

dnydwj dwKdnJ'

dW
Using the nomenclature of the enu of § 172, since -_— =0, because

W does not involve n, and similarly —— = 0, this equation
dw

becomes

|^(f'„0.«;)) = say ¥"„>«>) = |^(^'n(««')) = «^y ^'U^^^)

Thus it is indifferent whether the n or the w differentiation be

taken first, and whether F"„„(«m>) or F"^(«m) be used as symbol.

Although these second-gradients, calculated in these two different

ways, have the same value, they represent two perfectly distinct

physical phenomena. The one is the northward rate of change of

the westward gradient of h. The other is the westward rate of

change of the northward gradient of h. That these are equal,

whatever kinds of physical quantities be represented by h, n and

w, is a proposition of mathematical physics that is most interesting

and fertile in its various concrete applications.

175. Second a;,//-Gradient.—When two functions of x and y
fulfil the condition of being the partial x and y gradients of one

and the same function, then the function formed by adding the

products of these functions by Sa; and hy respectively, is said to be

a complete diflferential. Thus if ^^ and -^ be the functions,^
dx Zy

'

ascertained to be the partial x and y gradients of the same function

p^, then

ox oy

is a "complete differential," and this latter is said to be "in-
tegrable." If this has been found, by accurate deduction from
correct observation of physical fact, to be the increment of a real
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physical quantity, then it is certain that the function is theoretically

integrable (although the integration, may be impracticably difficult)

and that its two parts will fulfil the condition of § 174. Of course,

it is easy for the pure mathematician to invent functions of this

sort that are not integrable, and incorrect physical observation or

inaccurate deduction from physical investigation may lead to

dijBferentials that are not integrable; but such have no real

physical meaning.
176. Double Integration by dx and dy.—Conversely, if any

function of two independent variables, x, y, be twice integrated

first by dx and then by dy, the result will be the same as if first

integrated by dy and then by dx, being in either case the sum of

a function dependent on both x and y and of two other functions

depending separately, one of them on x alone and the other on y
alone.

These two latter functions are introduced by the integrations

in the same way as constants are introduced by integrations with

respect to one variable ; the one function being a constant with

respect to one variable, and the other being a constant with respect

to the other variable.

Thus, for example, if

then

, , =a + hx + ev-^exy
dxdy

^- IT / h c e \

where the laws of the functions X and Y must be determined by
"limiting conditions."

The finding of y from the given value of -,—^ is called the
dxdy

double integration of this function, and is symbolised by

//
T=— V- dx dy
dxdy

or
I / 4){xy)dx dy if ^(xy) be the given functional form of —^
J J dxdy

177. Graphic representation of Double Integration by dx
and dy.—The meaning of the double integration of (l>(xy) may
be represented graphically in the following different manner.

Let 4>{^/) lie represented by the height of a surface from a

datum plane, the co-ordinates parallel to this plane being x and y.
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Then the first integration I ^{xy)dx may be considered as extend-

ing along a section perpendicular to the datum plane and parallel

to the x-a.'sSs, in this integration y being a constant. The result of

this integration is a general formula for the area of any such section.

Two such sections at the very smaD distance 8^ apart will inclose

between them, under the surface and above the datum plane, a

volume equal to 8y multiplied by the area of the ^-constant section

at the middle of 8j/. This volume is, therefore, I I <ji{xy)dx > . Sy,

and the whole volume under the surface and above the datum

plane therefore properly represents I I <f>{xy)dxdy. This geometric

conception is more easily grasped if the integration be taken

between limits.

178. Connection between Problems concerning One Inde-

pendent Variable and those concerning Two Independent

Variables.—In an investigation concerning two mutually de-

pendent variables, such as those in Chapters I. to VII., the two
variables may always be represented by the co-ordinates to a plane

curve. This curve may be looked on as a plane section of a

surface, the three co-ordinates to the points upon which are related

to each other by the more general kind of law dealt with in this

chapter. Thus the former problems may always be conceived of

as the partial solutions of more general laws connecting three

variables with only one specific relation between them. The
problems of Chapters I. to VII. may thus be considered special

cases of more general problems of the kind now dealt with, and
each of them might be deduced by specialising from a more general

theorem.

CHAPTEE IX.

MAXIMA AND MINIMA.

179. General Criterions.—In fig. 1, at the parts C, E, H, K,
R S, IT, the Z-gradient of h is zero. The points C and K are

places where h rises to a maximum, the maximum K being greater

than the maximum C, but the phrase " maximtim " being under-
stood to mean a value greater than any neighbouring value on
either side. E is a place where h falls to a minimum.
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Thus the gradient falls to zero wherever there is either a

maximum or a minimum value.

At the maxima points, C and K, the forward gradient passes

through zero hy changing from positive to negative, that is, the

increase of the gradient is negative at these places.

At the minimum point E, the forward gradient changes from
negative to positive, so that its increase is positive.

Thus the criterion for distinguishing between a maximum and a

minimum is, that at the former the second gradient or second

differential coefficient is negative, while at a minimum point it is

positive.

It is not always, however, necessary to find the sign of the

second gradient in order to make sure whether the point is a

maximum or a minimum. For instance, if it be known that at the

place where the first gradient is zero, the value of h is positive,

and if it be also known that at two points near and on either

side of this place the value of h becomes zero, or of any positively

less value than at this place of zero gradient, then evidently this

place gives a maximum.
At the place H, fig. 1, the second gradient is zero, because to

the left of H it is negative, while to the right of H it is positive.

This case of zero second-gradient occurring along with zero first-

gradient is the limiting case coming in between the two previous

ones, giving respectively maxima and minima ; and it gives neither

a maximum nor a minimum. This includes the case of the dead
level E,S, where also both first and second gradients are zero.

Usually one's general knowledge of the physical phenomenon
being investigated is sufficient, without need of evaluating the

second gradient, to indicate whether or not there is any such point

as H. That is, the practical man who thinks of what he is

working at, and does not follow blindly mere mathematical

formulas, runs substantially no risk of mistaking such a point as H
for either a maximum or a minimum point.

180. Symmetry.—In very many practical problems conditions

of symmetry show clearly where a maximum or minimum occurs

without the need of investigating either first or second gradient.

Thus, if a beam be symmetrically supported, symmetrically loaded,

and have a symmetrical variation of section on either side of a

certain point of its length, which point is then properly called its

centre, then the bending moment and the deflection each reach a

maximum at this centre. Such considerations are to be utilised

wherever possible, and their use is sometimes more profitable in

practical result than the more strictly mathematical process.

181. Importance of Maxima in Practical work.—As examples
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of the utility of these theorems may be cited the finding of the

positions and magnitudes of maximum bending moments, of

maximum stresses, of maximum deflections, of maximum velocities,

of maximum accelerations of momentum, of the positions of rolling

load on bridges to give maximum stress in any given member of

the bridge, etc., etc. AU these things are of special importance in

the practical theory of engineering. In the jointing of pieces

together in machines and static structures, it is never possible to

obtain uniform stress over the various important sections of the

joint. It is of the greatest importance to find the maximum
intensities of stress on such sections, because the safety of the

construction depends on the maximum, hardly ever upon the

average, stress. The average stress on the section is found by
dividing the whole load on the section by the whole area of the

section. Such average stresses are often very different from the

maximum stress, and no reliance ought to be placed upon them as

measures of strength and safety.

Another class of technical problems in which maxima points are

of paramount importance is that in which two or more sets of

variable driving efforts, or of variable resistances, are superimposed

in a machine. Thus a first approximation to the turning moment
on the crank shaft of a steam engine of one cylinder, makes this

moment vary as sin a, where a is the angle at which the crank

stands from the dead point. If there be two cyUnders in which
the total steam pressures are Pj and Pj, constant throughout the

stroke, and the two cranks, keyed on the same shaft, stand apart

by an angle A ; then a being the angle from dead point of one

crank, (a + A) is that of the other. A remains constant while a
varies. If S^ and S^ be the two strokes, the total turning moment
on the shaft is

^{SiPi sina + SjPj sin (a + A)}

which reaches a maximum when its a-gradient is zero; that is,

when
cos a _ S2P2

cos(a+ A) SiPj"

This ratio is minus unity when SjPj = SiPj ; and if, further,

A = 90°, then a = 45° at the maximum.
182. Connecting Eod Bending Moments.—The connecting rod

of an engine is at each instant bent by transverse accelerations

of momentum, which, taken per inch length, would increase

uniformly from zero at the crosshead to a certain amount at

the crank end if the section of the rod were uniform. The
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actual bending moments on the rod follow nearly the law due

to this distribution of load, because the excess of weight in

each head is approximately centred at the point of support at

either end and, therefore, does not affect the bending moments.

If L be the whole length ; I the length to any section from the

crosshead ; w the transverse load per inch at the crank end : then

— is the load per inch at I. On the section at I, therefore, the
Li

bending moment is ! "S" ^ ~ 97^ "q" f
•

The first ^-gradient of this is zero at the point of maximum
moment ; that is, this point has a distance I given by

wL wP _ .

or

Z=i = -5773L.

Inserting this value of I in the general value of the moment, we
find as the maximum moment

\ 6 •

/3

loL L wlP 1

73 " L6 X 3^3 )

> = 06415wL2

which may be compared with '0625wT?, which is the central

moment in the case of the same total load, ^wL being uniformly

distributed along the whole span. It is 2|% greater than this

latter, and its position is 7J% of the span away from the centre.

183. Position of Supports giving Minimum Value to the
Maximum Bending Moment on a Beam.—The following illustrates

how maxima of arithmetic, as distinguished from algebraic, quan-

tities may sometimes be found without use of a differential

coefficient. If a beam, freely supported, overhang its supports

equally at the two ends, and be uniformly loaded ; then certain

positions for the supports will make the maximum moment less

than for any other positions of these supports.

Let L and w per inch be the total length and the load, and I

the span between the supports. The bending moment on the

section over each support is lo . -^ j- = -q- (L - 1)\ The

central moment, taking it of opposite sign, is

wTu I wL L _ wLf L \
"2" Y ~ T" • T ~XV ~ T/
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If this latter be negative, i.e., if i<-^, these two moments will be

of the same physical sign; that is, the beam will be bent convex

on its upper surface throughout its whole length. If i>-^, a

certain central length will be concave on the upper surface, and
inside and outside this length the moments will be of opposite

sign. As Z is made larger, the magnitude of the central moment
becomes always larger and that of the moment at the supports

always smaller. Therefore, neither has any algebraic maximum.
But when they are arithmetically equal, their common arithmetic

magnitude is then less than the magnitude of the greater of the

two for any other span. So that, irrespective of sign, the mini-

mum of the arithmetic magnitudes of the three maximum moments
is reached when

or

I = -SSbSL and ^^ = •2071L

.

Inserting this value of I in either formula for the moment we find

Central moment = moment over each support = 02144wL^

which is only 17% of the central moment on the same beam with

same load when supported at the two ends. This fact may be

regarded as the basis of the great economy of the modern " canti-

lever " style of bridge building.

184. Position of BoUing Load for Maximum Moment and for

Maximum Shear.—The next example shows how reasoning about

increments, instead of differential coefficients, may be used to find

maximmn values.

The bending moment produced by a load on any section of a

girder, supported freely at its ends, is of the same sign wherever

the load be placed within the span. Therefore the moment on

each and every section produced by a uniform rolling load reaches

a maximum when the load covers the whole span.

The right-handed integral shear stress on each section equals the

supporting force at the left-hand support, minus the load apphed
between this support and the section. Therefore, any load applied

right of the section increases this shear stress, because it increases

the left supporting force and leaves unaltered the load between it

and the section. But a load applied left of the section decreases

the same stress, because it increases the left supporting force less
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than it increases the load between it and the section. Therefore

the right-handed shear stress on any section due to a uniform
rolhng load reaches a maximum when the load covers the whole
of that part of the span to the right of the section, but covers none
to the left of it. The left-handed shear stress reaches its maximum
when the part ^eft of the section is covered. The arithmetic

maximum of the stress is reached when the larger of the two
segments into which the section divides the span is covered while

the shorter is empty.
185. Most Economical Shape for I Girder Section.— The

economic proportioning of sections is illustrated by the following.

Let M be the bending moment strength of an I girder, whose
depth is H outside the flanges and h inside them, and whose flange

breadth is B and web thickness viE.

Let the area of its cross-section be called S.

Then the moment strength per square inch of section may easily

be shown to be

S"6H' B.~{\-w)h

M
If H and h be increased in the same proportion, this —- will

8
increase in proportion to the first power of either of them, large

sections being always stronger and stifier per square inch than
small ones. It also increases if H is increased without alteration

M
of h. -^ also increases as w is decreased towards zero, the web

S
section contributing to the moment strength less than the flange

section and, therefore, less than the average for the whole section.

If, however, the web thickness be supposed fixed in accordance

with the requirements of shear strength, and if h be diminished

while H is unaltered, thereby thickening the flanges internally,

this flange thickening will, up to a certain limit, increase the

economy of the section, beyond which a further thickening will

M
decrease it again. The /i-gradient of -3- is

;;; - 3(1 - w)h^B. - (1 - w)h} + {l- w){W - (1 - w)W}

6H" {H-(l-w)/jp

If this be equated to zero, there results

2(.-»,(|)'-3(i)\.
= 0.

This is a cubic eqjiation giving the most economical depth inside
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the flanges when that outside the flanges, as also the ratio w of

web thickness to flange width, are fixed by other considerations.

This ratio between h and H essentially depends on w; \iw = Q,

giving zero thickness to the web, the above equation gives h = H,
i.e., gives zero thickness to the flange also, or the whole section

shrinks to zero area. When w= '5, it gives A/H = "6527. A useful

exercise for the engineering student is to solve this equation for values

of w ranging up to "5. The solution can be very easily effected

by the method of solving for w taking a series of values of S./H

ranging from 1 down to "6
; tabulating these graphically as a curve

;

and then reading from the curve the fe/H for any desired values of w*
186. Most Economical Proportions for a Warren Girder.—

The economic proportioning of general dimensions is the subject of

the next example.

If a Warren girder of height H, and length of bay B, have the

bay width B made up of 6 the horizontal projection of a tie-brace

and (B - U) the horizontal projection of a strut brace ; then the

weight of material G required to give the structure strength to carry

the desired load, exclusive of that spent in jointing the various

members together, may be expressed by a formula of six terms

involving, besides H, B and h, also the span, the load, the stresses

allowed on the sections, and four numerical coefficients which do
not vary with the H nor with the span or load nor with the ratio

^ and vary very little with the number of bays. The same formula
x>

may be applied to any pattern of lattice girder by suitably adjusting

the numerical coefficients.

Four terms of this weight decrease as H increases, while two
increase. A certain girder depth H will, therefore, be most
economical in expenditure of material. Assuming everything but
H to remain constant, and equating the H-gradient of the above
to zero, there is obtained the best girder depth.

Again, the girder weight contains two terms increasing with B

and two others decreasing with B. Assuming the ratio -^ and all
B

other quantities except B to be kept unaltered and equating the

B-gradient of G to zero, we obtain a formula for the most eco-

nomical bay width for given span and height, which gives also

indirectly the best number of bays to insert in the given span.

This formula cannot, however, be precisely followed, because the

number of bays must necessarily be a whole number while the
equation gives in general a fractional number.
The girder weight also varies with 6 in two terms, one of which

* See Appendix H.
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increases while the other decreases with 6. Considering every-

thing but b as fixed, and putting the 6-gradient equal to zero, a

rule is found for proportioning the length of the ties to that of the

struts.

These results are not formulated here because to guard against

their incorrect application requires rather more explanation of

special bridge-building detail than is suitable to this treatise.

187. Minimum Sum of Amiual Charge on Prime Cost and of

Working Cost.—^Very many technical problems are, or ought

to be, solved by reducing to a minimum the sum of two main
costs : first, the initial cost of construction and other necessary

preliminary expenses; second, the cost of working, maintenance,

and repair. These can only be added when reduced to terms

rationally comparable, and this is usually done by reducing both

to an annual cost or charge. Interest on all initial expenses,

including prime cost of actual construction, is to be added to an
annual charge to provide for a sinking fund to reproduce the

capital after a period within which it is estimated that the plant

will become useless from being worn out, or having become obsolete

—which annual charge is often referred to as " depreciation "

—

and this forms the first part of the whole cost. The second part

consists of wages, materials used up in working, power for driving,

etc. If the initial expenditure be skiKully and wisely spent, its

increase nearly always, within limits, decreases the working ex-

penses. It follows that in most if not all cases a certain initial

expenditure is that that will make the total annual cost a mini
mum. Thus the adoption of a larger ratio of expansion in a steam
engine wiU, within certain limits, diminish the consumption of

water and of coal required to produce any required horse-power

;

but it will necessitate a larger and more expensive engine for this

same horse-power, which will be, moreover, more costly to keep in

good working order ; and this is the real consideration which ought
to determine the commercially most economic cut-oflf in steam
engines. Lord Kelvin's calculation of the best cross-sectional

area of electrical leads is another example of this kind of

problem.

188. Most Economical Size for Water Pipes.—The following

is a similar example directed to the calculation of the most economic
diameter of water pipes, first published by the author in 1888.

If a given weight or volume of water is to be delivered per hour
at a certain station at a certain pressure, this means the same thing

as delivering so much water horse-power at this station. Let this

horse-power be called H, and the pressure demanded at the point

of delivery p ; let L be the distance from the pumping or gravity-
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power station, and d be the internal diameter of the pipe. Then
the loss of power in transmission, through friction and viscosity

(exclusive of loss at bends and valves), can be shown to be nearly

a -r™- J where a is a numerical coefficient dependent on the smooth-

ness of the inside surface of the pipe and on the shape of cross

section. If q be the cost per hour of generating 1 horse-power,

and if the delivery be continued for T hours per year ; then the

cost of this waste horse-power per year is

The prime cost of pipes and pipe-laying (including trenching)

may be taken as the sum of two terms, the iirst proportional to

the length L, and independent of the size of pipe ; the second
proportional to the quantity of metal in the pipe. The thickness

of pipe requires to be designed according to the formula fA-t-^j

where A and B are constants. The part of the initial cost which
varies with the diameter will, therefore, give an annual cost in

interest and depreciation of

rLdt
{--'i)

where r is a factor dependent on (1) the price of iron; (2) the

nature of the ground to be trenched ; and (3) the prevailing rate

of interest on money.
That part of the total annual cost which varies with the size of

the pipe is, therefore,

Equate the <i-gradient of this to zero ; the result is

an equation for the determination of d, which, although of the

7th degree, is very easily solved with the help of Barlow's Tables
of powers. Other things being equal, it makes the diameter vary

H
according to a power of — lying between ^ and

-f
.*

Jr

* After demonstrating this law, the author incidentally diseovered that
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189. Maximum Economy Problems in Electric Transmission
of Energy.—Calculations of maxima enter into many important

problems in electric engineering. Let an electric current generator

exert an E.M.F. equal to E, and that part of the electric resistance

of the circuit under the control of the supply company be E,
while the rest of the circuit has a resistance r. Then the current is

E
if there be no counter E.M.F. The electric work per second

in the external resistance r is =; ^ . If it be desired to make
(E + r)2

this as great as possible by adjusting r without alteration in either

E or E, we find the r-gradient of this external work to be zero

E^
when r = E, and the external work is then -7-, the whole work

ir

being double this.

If there be an external counter E.M.F. equal to e, the current is

\=:; ' and the work done on the counter E.M.F. is ^ ~ ' . This
E+r E+r
work continuously decreases as either r or E is increased without
change in E or e. If E, E, and r be fixed while e is adjustable,

the e-sradient of this work is
-.=i^ , which becomes zero when^ E + r'

e = JE, giving the maximum work that can be done on e under

E^ e
these conditions equal to -j— ^ and the efficiency •=- equal to ^.

This gives maximum motor work under the prescribed conditions,

Tiot ma/ximum efficiency.

In the early days of attempted transmission of power by electric

current, it was believed by many that this showed that no higher
efficiency than \ could be reached in such transmission. This mis-

apprehension was acted upon practically by electricians of good
reputation, and retarded progress in this branch of engineering.

The efficiency of the transmission is -=-, and this can be made
E

nearly unity by making e nearly equal to E. By so doing, the
excess of driving over driven E.M.F., namely (E - e), is diminished,
and the current and horse-power delivered are diminished unless the
decrease so effected be neutralised by increase in e, and, therefore,

also in E, or by decrease in E + r. "With small resistances, how-

an old established firm of water engineers had empirically framed » rule
which was nearly identical with the above.
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ever, combined with high voltages, large horse-powers can be
transmitted with high electric efficiency. The necessary voltages

and resistances required to deliver any required horse-power with
any given efficiency are easy to calculate, but the calculations do
not illustrate the subject of this chapter.

A large number of electric transmission calculations of values

giving maximum economy, etc., under various conditions, may
be found in a series of articles by the author in Industries,

1889.*

190. Maxima of Function of Two Independent Variables.—
If a function of two independent variables be represented by the

height of a surface with the two variables as horizontal co-ordinates,

then any plane vertical section will give a curve which will rise to

maximum height or fall to minimum height where the partial first

gradient is zero, and the partial second gradient is not zero. If

two such sections cross each other at a surface point where the

partial first gradients are zero in both sections, then the surface is

level throughout a small extent all round the intersection point.

There are six cases to be distinguished.

(1) The partial second gradient is positive in both sections ; then

the point is at the bottom of a hollow in the surface, all

neighbouring points being higher; so that the value of

the function represented by the height is here a minimum.
(2) The partial second gradients in the two sections are both

negative ; then the point is at the top of a convexity or

globular part of the surface, all neighbouring points being

lower ; so that the value of the height function is here a

maximum.
(3) The one partial second gradient is positive, while the other

is negative. Here the surface is anticlinal, or saddle-

shaped ; it is hollow in one direction, and round in the

other. This gives neither minimum nor maximum value

to the height function.

(4) The one partial second gradient is positive, while the other

is zero, passing from positive to negative. Here the

part of the surface is the junction between a hollow
portion lying on one side of a vertical plane and an
anticlinal portion lying on the other side of the same;
and the height function is again at neither maximum nor
minimum value.

(5) The one may be negative, while, as in (4), the other is zero.

* Also many other problems dealing with modern conditions are solved In

Chap. III., on "Economic Deductions from Statistics and Technical Condi-
tions," in the author's Electric Traction, published 1905.
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There is here indicated the junction between a round
portion and an antichnal portion; and again neither

maximum nor minimum occurs here.

(6) Again both may be zero. Here two semi-anticlinal surfaces

join together, and the point gives neither maximum nor

minimum.
The first two cases alone are important as regards finding maxi-

mum and minimum values. In these cases both first gradients are

zero, and the second gradients are of the same sign. To find the

maximum or minimum values of a function of two independent

variables, the process is to equate the two partial first gradients

to zero, and combine these two equations as simultaneous ones.

Afterwards the second gradients should be examined as to sign if

the physical character of the problem is not so plain as to make
this unnecessary.

191. Most Economic Location of Junction of Three Branch
Railways.—As an illustration of this process, take an elementary

problem in the theory of railway location. Three centres of trafiic

are supposed situated in a plain across which the construction of

the railway is equally easy in all directions. The three centres

are to be joined by three branch lines radiating from a junction,

the finding of the best position for which junction is the problem
proposed. The traffic issuing from and entering each centre is

the sum of the two traffics between it and the other two (inclusive

possibly of traffic going through these to more distant points).

The importance of the three traffics to and from the three centres

being properly measured, and being here symbohsed by A, B, and
C ; and the distances of the three centres from the junction being

called a, b, c; the correct solution of this problem means the

location of the junction so as to give a minimum value to

Aa + Bb + Gc

A, B, C being given, while a, b, c are to be found.

Eeferring to the notation of fig. 29, in which the distance

between the points of traffic A and C is called L, and the projec-

tion on L of the distance between the points of traffic A and B is

called A,, while the projection of the same perpendicular to L is

called H ; the problem may be conveniently stated to be to find

the co-ordinates I and h of the best junction.

"We have with this notation

a={P + h^}i &={(A.-Z)2 + (H-;i)2p e={{L-iy+h^}K

The two partial I and h gradients of (Aa + Bh + Cc) are taken;

thus
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da
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and (y - a), are the three angles between b and c, a and b, e and a.

Since the sides of a triangle are proportional to the siaes of the

opposite angles, it follows immediately that these three angles

A A A
bo, ab, and ea, to which the three branches are to be adjusted, are

the exterior angles of a triangle whose sides are made equal (to

any convenient scale) to A, C, and B. By constructing this

triangle these angles can be found, and by drawing upon two of

the lines joining two pairs of centres of traffic two arcs of circles

containing these angles, the proper junction is located as the inter-

section of these arcs.

This result may be perceived more directly by noticing that the

two partial gradients to be equated to zero are, one the sum of the

projections on L, and the other the sum of the projections on H,
of A, B, C, measured along the lines a, b, c, outwards from the

junction. Other maximum problems of technical interest are

solved in Appendices I., K., L.

CHAPTEE X.

INTEGRATION OF DIFFERENTIAL EQUATIONS.

192. Explicit and Implicit Belations between Gradients and
Variables.—^The utility of the art of integration arises from the

fact that in the investigation of phenomena it often happens that

the discovery of the ratio between simultaneous increments (or

gradient) of mutually related quantities is effected more easily by
direct observation than is the discovery of the main complete

relation between these same quantities. This complete relation is

then logically deduced by the help of integration, combined with

the further observation of special or "limiting" values. The
complete relation being less general than the dififerential relation,

there appears in it an " arbitrary constant " whose value is not

given by the differential relation, and which value must be dis-

covered by examination of the "limiting conditions." The
differential relation apphes equally well to a whole " family " of

integral relations which differ among themselves in respect of

these limiting conditions.

If, when the differential relation is expressed as an equation, the

gradient can be placed alone on one side of the equation, while on
the other appears a function of one only of the mutually dependent
variables ; then, in order to establish the integral relation, nothing
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more has to be done than to integrate this latter function directly

according to one or other of the methods explained in previous

chapters, or given in the appended Classified Reference List of
Iniftgrals. This is the case of the gradient being expressed as an
expUcit function of one of the variables.

If, however, the differential equation involve the gradient and
both variables in such a way that the above simple separation does

not appear ; that is, if the gradient appear as an implicit function

of the variables ; then either the impHcitness of the relation must
be got rid of by some algebraic process, or else a special method
of integration must be employed. This process is caUed the

"solution" of the differential equation.

193. Degree and Order of an Equation. Nomenclature.—An
ordinary algebraic equation is said to be of the w"" power or degree
when it involves the n^ power of the " unknown " quantity or of

either of the " variables." In a differential equation, the gradients

being the quantities to be got rid of by integration, the equation is

said to be of the n^ degree when the w* power of the highest

occurring gradient is involved in it.

If it involve a second gradient ( —-^ V it is said to be of the

second order. If it involve an n^ gradient, it is said to be of the

n^ order.

The integral relation deduced from the differential equation may
be called the integral equation, but is also called the primitive

equation.

In what follows X' will mean
;

ax

194. X'=f{x).
The form of differential equation simplest to integrate is the

explicit relation,

T^-f{x)

where f(x) is a function involving the variable x alone, and not X.
This is equivalent to

dX=f{x)dx

and if /( ) is integrable by help of any of the formulas in the

Reference List, the integration can be effected at once ; thus :

—

X= [f{x)dx + G

where C is the constant of integration.
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195. X'=/(X).
Again, if X'=/(X)

where /(X) involves X only and not x, then

and direct integration of -^, if it be possible by one of the formulas

ia the Eeference Liat, gives the integral relation between X and x

fdX ^
//(X)"

As an example, if /(X) = X ; then logj X = a; + C.

As another example, if /(X) = sinX ; then log^ tan -~- = x + G.

196. X'=/(a;)F(X).

Again, if the differential relation be found in the form

X'=/(*;)F(X)

where f{x) is a function involving x and not X,
whUeF(X) „ „ X „ x;
then

jYx"\
=f(x)dx

and

/jf)
= //(^)^a. + C

'F(X)

which gives the integral solution if both these integrals can be
found directly.

As an example, take

X' = cos a; sin X

;

then
-^

loge tan -^ = sia a; + C .

The case of § 195 is only a special case of the more general

method of the present article, namely, the case in which /(«) = 1

;

while that of § 194 is the other special case in which F(X)= 1.

In aU these cases X' has been found as a function of x and X
in a form in which X', x, and X can be completely separated as

distinct terms or factors in the equation.
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197. X=f{X!).
Suppose now that a certain function of the gradient X' is found

to equal x ; thus,

x=f{^).

This equation may be capable of easy algebraic solution so as to

give X' as an explicit function of x ; thus,

X'=f-\x)

where y^i(
) means the function that is the inverse of /( ). It

must be noted that such a solution has in general more than one

root. Thus, if /(X') be a quadratic rational function of X', there

are two roots. This solution can then be dealt with by § 194;
thus,

ix + G-jrK^)dz

provided the function /~^( ) turns out to be directly integrable.

This method, however, may be impracticable, or else may involve

more labour than the following.

Take the X-gradient of

x=f{X')

dx__\ _ ,, ,.dX'

from which we deduce by transposition

dX = X'f'{X')dK'

and

X= jX'f{X')dX' + C.

Here jX'f'{X')dX' is the same function of X' asjxf'lxyix would

be of x; and if xf'(x) is directly integrable by dx, the above can
be directly found as a function of X'. Let this function be called

(f>(X'), and suppose it expressed in terms of X'. Then from the
two simultaneous equations, of which the first is the original

differential equation,

x=/(X') 1

and X = ^(X') + Cf

X' can be eliminated so as to leave an equation involving only x
and X. This is the integral solution of the given differential

equation.
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As an example let

X= sin X'.

Then
/'(X') = cosX'

and

fX' cos X'c^X' = X' sin X' + cos X'

= u;X' + (1 - a;2)i = x sin-ia; + (1 - x^)K

Therefore

X = a;sin-i.B + (l-a;2)i + C.

The same result is obtained by solving the given differential

equation for X', viz., thus X' = sin~i2;, and integrating directly

from this.

198. X=/(X').
If the implicit relation is found in the form

X=/(X')

either the algebraic solution of this for X' may be obtained, whence
the integration

/• dX _ „

or else a method similar to that of last paragraph may be followed.

Thus, taking the a>gradient,

whence

jl^dX.' = say .^(X') = a: + C

this integration by rfX' involving X' only, and giving some function

of X', which is here symbolised by <^(X') .

From the two simultaneous equations

X=/(X')|
and >

x + C = <j>(X.')\

X' is to be eliminated by ordinary algebraic means, leaving the

integral equation involving only x and X.

199. mX = X'.
, 1 ,

A particular case of the last is that of /(X') = —X'. Here
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m m ax
or

1 dX
m X

the integration of whicli gives directly

^=llog.(CX).

In fact, in this case the differential formula of § 198 reduces to

that of § 195, and is the first of the two examples of the result of

§ 195 given in that paragraph.

200. X = :b/(X').

A differential formula only slightly different from that of § 198,

and to be dealt with in the same general manner, is

X = x/(X').

Taking the a-gradients of both sides,

;x:'=/(X')+^/'(X')^

from which '

and therefore

/:

/(X-) •_dx
X' -/(X') ~ X

From the two simultaneous equations

X = a;/(X')

and
log(Ca;) = </.(X')

X' is to be eliminated algebraically so as to leave the integral

equation between x and X.
201. X = wa;X'.

A particular case of the last formula, which is also at the same
time a particular case of § 196, is

f(K.') = nX'
or

X = raa;X'

or

dX. _ Idx
X n X
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whence by direct integration of eacli side

1

X = Ca;''-

202. X=±a;X'+/(X').
If the differential equation be of the more involved form

X = a;X' + /(X'),

by taking the a>-gradients on both sides, there is obtained, X'
cancelHng out from the two sides,

0={a;+/'(X')}X".

This equation has two solutions. The first is

X" =
whence

X' = CiandX = Cia; + C2

since X = a!X'+/(X') and X' = Ci. This is a partial integration

of the given differential equation.

The other solution is

a!+/'(X') =
From this and

X = a;X'+/(X')

treated as simultaneous equations, X' may be algebraically elimi-

nated, leaving an equation giving X in terms of x either explicitly

or implicitly. Let this equation be symbolised by <^(a;,X) = 0.

This ^(a;,X) = is a second partial solution of the given differen-

tial equation.

The combination of these two partial solutions gives the complete

solution in its most general form, which, in application to whatever
physical problem may be in hand, must be particularised by the

insertion of the " limiting conditions." These limiting conditions

sometimes exclude one of the " partial " solutions as impossible,

leaving the other partial solution as the full true solution of the

particular physical problem in hand.

The solution of a more generahsed form of this differential

equation is given in § 210, the method of solution depending on
that of § 208.

A form differing from the last only in the sign of xX! is

X-f-a;X'=/(X').

Here X + xX! is the CB-gradient of a:X.
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Therefore, the integration gives

xX = jf(X.').dx = j^.dX';

and, if, X" be expressible in terms of X' alone and the function

\^J be integrable by dX.', this integration will give an equation

between x, X, and X', between which and the original equation, X'
may be algebraically eliminated, leaving one involving only x and X.

203. Homogeneous Kational Functions. — If the relation

between x, X, and X' be found in the form

(ax^ + bx"'-^X + CK^-^X^ + -—)X' = Aaf + Bx^-^X + Caf-^X^ +—

-

where the {x,X) functions on the two sides are both "homo-
geneous " of the m"^ degree, that is, where each consists of a series

of products of powers of x and X, the sum of the two indices in

each term being m ; then by dividing each side by a;™, this may be

X
converted into an equation in —

.

X

Call —=4f) or X=x^ : therefore X' = 4p + a'-^'.

X

Dividing by a;"*, the diiferential equa.tion becomes

(a + &J + cJ2 + ---)(J+a;J') = A + BJ + C4^2 + ---.

From this is easily deduced

dx_ a + hM + (iS^ + I ,«,

^ ~A + (B-a)J + (0-6)1^2 + <^'9-

The integral of the left side is logs;. Therefore, if that on the

right is directly integrable * to a function of Si say ^(Jf)=<^f — j

;

then the equation

loga! + C =
^(|)

gives the desired integral relation between x and X.

A convenient shorthand symbol for such a homogeneous {x, X) -

function of the w"" degree is f{x^^, X^). The two such functions

* See Classified List, HI. A. 19.
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may be called ./(a;""'', X*") and F(a;"~'', X''). The given differential

equation may then be written

X'/(a:'"-'-, X') = F(a!'"-'-, X'')

.

Dividing /(a!™-'", X'') by a;" we obtain the same function of 1 and

^ as/(a;™~'', X'') is of x and X. The quotient may, therefore, be

written /(l™-', Ml, and similarly that of F(a:'"-'-, X') by a:" may be

written F(l"'-'-, ^1
The integral equation then appears as

r dx
loga;+C= F(l"'--, J'-)_ y

204. Homogeneous Rational Functions.—The last form is a

particular case of a more general one involving the first power of

X' only, and the ratio only of X to x. Call this ratio M as in last

article, so that as before X' =^ + xM'. The present more general

form of differential equation may be written

where /( ) indicates any form of function.

Therefore

"^ X
or

dx dM
X /(J)-J-

The integral solution of this, namely,

dM
loga; + C =

/(J) -J
X

gives X in terms of M=—, and therefore gives X also in terms of x.

205. X = k/(X').

A form of differential equation of cognate inverse character is

that solved in § 200, namely,

X= ^/(X')

or

J=/(X')whereJ = |.

One solution of this is given in § 200. Otherwise, it may possibly

be more easily solved algebraically so as to give X' explicitly in
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terms of M- Let f-\ ) denote the inverse of the function /( ).

Then this algehraic solution would appear as

of which, according to last article, the integral solution is

loga; +C= I

206. X' = {Ax +BX + G)^{ax+bX + c).

A differential equation bearing a Resemblance to that of § 203 is

(ax + bX + e)X' = Ax+ 'BX + G.

If the two constants c and C did not appear, then by dividing by

X, each (9;,X) function would be converted into one involving the

ratio only of the two variables. But c and C can be got rid of by

shifting parallelly the axes of co-ordinates from which x and X are

measured, which change does not affect X'. If x and X be the

new co-ordinates, then it is easily shown that the axes must be

shifted so as to make

Bc-bC ,^ „ Ga-cA
x= x- -T-, is and. A = A. - -TT fs •

A6 - aB A6 - oB

Then, since — =— = X', by dividing out by x, there results an
dx dx

equation of the form dealt with in § 203.

207. Particular case, B = - a.

If in the equation of last article B = - a, then the two terms

with the common factor a combine to make the complete increment

of xX. Thus the equation then reduces to

(6X + c)d:X + a{Xdx -t- xdX) = {Ax + G)dx

the integration of which gives

^bX^ + eX + axX-^Ax^ -0^ + ^=

in which K stands for the integration constant.

208. X'-i-X^' = S.

Let ^' and S be given functions of x, of which ^' is a function

whose integral by dx can be directly found, namely M. Then, if

the differential equation between X, X', and x be found to be

X'-hX^' = S;
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this can be solved by the device of multiplying by what is called

an " integrating factor," which means a factor which converts both

sides of the equation into directly integrable functions. The factor

which does this in the present case is e^, where M is the integral

of the given function ^' and e is the base of the natural logarithmic

system. Since the a;-gradient of e^ is e^^', that of Xe^ is X'e* +
"K-X'e^- Therefore, multiplying both sides of the differential

equation by e^ and integrating, there is obtained the integral

equation

Xe5= fHeStfe+C.

This formula is of practical use only when He* is a function which
can be integrated either directly or by help of some transformation.

209. X' + X^' = X''S.

This process may be followed in solving the differential equation

x' + x^'^X'-s

because X^S is a function of x and may be inserted in place of

S in the above . solution. Another solution, however, is obtained

by dividing each side by X" and multiplying by the integrating

factor (1 - ra)e»-"'5. The a;-gradient of XV^ is

(rX' + sXJ')X'-V*

so that, taking s = r, the a>_gradient of XV* is (X' + X J^')X'-' . re'*.

The first factor here is identical with the left-hand side of the

differential equation of this article when each side is divided by
X" if ?• = 1 - ra. Therefore the integration gives

Xa-ied-'ii = {l-n)
I

He'^""' ^dx + G.

Provided He"-"'* be integrable, this formula wQl be of practical

use.

210. X = a;F(X')+/(X').

The following equation is generalised from that of § 202 by
inserting the general function F(X') of the a^gradient of X, in

place of the special simple function X'.

X = x¥{X')+f{X').

Taking the a;-gradient of each side,

X' = V{X') + {x¥{X')+f'{X')}^.

Transposing this,

dx_ F'(X') f'jX')

dX' '^ X'- F(X') X' - F(X')
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This is of the same form as that of § 208 with the substitutions

F(X')

X'-F(X') "

and
/'(X')

X va. place of X
X „ ,, ,, a;

„ 4^'

X'-F(X') " " ."
^•

Therefore, if we use the shorthand symbol

so that 4p is a function of X' only ; and further use

a for.
/(X')

X'-F(X')'

another function of X' only ; the integration gives

a;ei= fSe^dX' + C;

which, if He^ be directly integrable by X', gives an algebraic

equation between x and X'. Combining this with the original

equation as simultaneous, the algebraic elimination of X' gives the

desired integral equation involving only x and X.
211. General Equation of 1st Order of any Degree.—The pre-

ceding differential equations contain X' in the first power only.

The general equation of the first order and of any degree may be

expressed thus :

—

X'» + J„_iX'»-' + X-^X'"-^ + - -- + JiX' + J^o =

where 3in-\,^n-%-" ^a are n different functions involving both
X and X, and n is the degree of the equation. If possible this

should first be solved for X' algebraically in terms of x and X.
There will be n solutions giving n values of X' which may be
symbolised by X'„^ X'„_i_ X'j^ X^ each of these values of X'
being expressed in terms of x and X. This reduces the above
equation of the ra"" degree to an equivalent series of n linear or

first-degree equations; for instance the first of this series is

X'-X' =0
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where X'„ is a function, supposed now to be known, of x and X.
Integrate each such linear equation if possible, by one of the
methods already given. Let the integral solutions be here
symbohsed by

<^„(a;, X, C) = ; <^„_i(a;, X, C) = ; etc., etc.

Then the general solution, that is, the equation which includes all

these various solutions, is either

^J,x, X, C) •

<^„_i(^, X, C) <^lx, X, C) • U^, X, C) =

or some other algebraically legitimate combination of these

solutions.

212. ftuadratic Equation of First Order.—Applying the result

of last article to the equation of the second degree, namely,

X'2 + X'^ + H = 0.

The algebraic solution of this for X' in terms of ,^ and E is

4f, 1

X'=-f +fVJ''-4S.

The two integral solutions are, therefore.

and

X + JJ^cZa; + 1 f V-^^ - 4S(^x + C = .

As an easy example, take the differential equation

X"i + X'sina:-^ = 0.
4

Therefore, ^^^ - 4H = ^sin^x + cos^a;= 1 ; and the two integral solu-

tions are

X = |-(cos x-x)-\-Qi

and
X = |(cos a; + a;) + C

.

213. Equation of Second Order with One Variable Absent.—
In differential equations of the second order with only one
independent variable, there may appear powers, trigonometrical, or

any other kind of functions of all the four quantities

X", X', X and X,

I
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Now X" may be expressed in terms of X' and either a; or X by

means of the substitutions

Therefore, if in any second-order differential equation X does not

appear, it may be transformed by help of the substitution (a) so as

to make X" also disappear, leaving only

—— , X' and X

.

ax

This is an equation of the first order between X' and x, and may
be solved by methods already explained so as to give X' as a

function of x (i.e., so as to eliminate -r- ) • This again is a first-

order equation between X and x, and by a second similar solution

we may pass to the integral equation between X and x.

On the other hand, if x does not appear in any second-order

equation, it may be reduced by the substitution (6), so that it will

involve only

^=7 , X' and X

,

oX

This is an equation of the first order again between X' and X,
whose solution gives an equation between X' and X not involving

-=-; and from this again by a second integration, the desired
aX.

integral relation between X and x may result.*

214. Second Order Linear Equation.—The linear, or Ist degree,

equation of the second order appears in a very general form as

X" + X'f{x) + X-E(x) = 4>(x),

where /, F and (jt are any forms of function.

Provided this equation can be solved when ^(a;) = ; then also,

when (j)(x) is any function, it may be reduced to an equation of

the 1st order. Thus, let B be a function of x which would be a

solution if <l>(x) were zero ; that is, let

U" + n'f{x)+'BF(,x) = 0.

* See Reference List, XI. C, 5f
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Give the name X to the ratio of X, the true solution of the given

equation, to S ; that is, let

X = JB;
Then

and

Therefore, inserting these substitutions in the original equation, it

becomes

M"U + ^'{2S' + nf{x)} + M{n" + n'f(x) + mx)} = <^(a;) .

But the bracketed factor of the third term is zero; so that the

transformed equation becomes

S'n+M'{2U'+nf{x)}=i>(x).

The supposition is that H has been found ; from which H' can also

be found in terms of x. This last form of the equation therefore

contains only known functions of x besides X" and j^'. Now ^"
is the first a^gradient of M' ; and this is therefore a 1st order

linear equation as between ^' and x. Thus, if any of the already

explained, or any other, method of integrating 1st order Hnear

equations be applicable, then ^' can be found as an explicit or

implicit function of x, thus giving another 1st order equation

between M and x. By a second integration by one of these same
methods, 3i may then be found as a function of x; and finally

X = ^U can be obtained as the desired solution.*

215. X" + aX' + 6X = 0.

The equation determining H in § 214 is soluble or not according

to the particular forms of the functions /( ) and F ( ) : at any rate

no reduction of the equation has yet been discovered showing,

independently of the forms of /( ) and ¥{ ), how it may be solved.

One simple case is that in which these functions are both
constants. Let f(x)=a and 'F{x)=b, a and b being both con-

stants. The equation is then, using X instead of S,

X" + aX' + 6X = 0.

Using the substitution (b) of § 213, this becomes

'-1-6X = 0.

This may be written

(«+rfx)^-

* See Reference List, XI. C. 7.
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which is soluble by the method of § 204 ; or it may be written

-^=
dK'

«+rfX
which is soluble by § 200.

By either method the solution is obtained which is printed in

the Classified Reference List, at XI. C. 3.

216. X" + aX' + hX = <l>(x).

In this simple case of f{x) = a and F(x) = b, the more general

equation of § 214 becomes

X" + aX' + 6X = .^(a;);

and its reduced form, when divided out by S, becomes

*.*•{ 4«}=^'.
By § 215 both S and W are known functions of x ; and, therefore,

this equation is of the form given in § 208, and can be integrated

so as to give ^', provided the function •< 2-^^ + a> can be in-

tegrated by dx. This is integrable because it is found that

= _ a _ Jib-aHa.n
|
^^ib^^+C

\
when a2<46.*

217. X<'"=y(2:).

If the k"' aj-gradient of X be called X'"', and the process of

repeiating the integration of a function n times be symbolised by
'"'

.

; then, if the differential equation of the w'" order be
/

Xi'"=/(«)

it has already been shown in § 154 that the integral equation

between X and a; is

fin)

X= / f{x)dx^ + G„_raf-' + C„_2a!"-=' + -- - + Cia; + 0^ .t

* See. Reference List, XI. 0. 6 and 3. t See Reference List, XL D 3.
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218. X<»'=/(X):X""=AX.
If the equation of the w* order be

X""=/(X)

it is integrable only in particular cases. Thus in § 153 is given
the case

XW = >fcX

where k is any number + or - . Let b be any number, and let

Tbe the "modulus" of the system of logarithms of which the
base is b. Take /8 = T/^V". Then a solution of the above equation is

X = 6P'orlog6X = ;8a;.

If b be taken equal to e, the base of natural logarithms, then T = 1,

and the solution is

log,X = 7<:V»a;.

If decimal logarithms be used, or 6=10; then T = "iSi, and

logi„X = -434AV''a;.

Again in § 153 it is shown that if »i be an even number, and if

XW = (-1)''/%X

then an integral solution is

X =A sin K-I'^x + B cos Ul^x

where A and B are constants of integration.*

219. X"=/(X).
When ra = 2, this equation becomes

X"=/(X).

A general rule independent of the form of /( ) has been found for

iling with this second-order equation. Multiply each side by
'. Then since 2X'X" is the a^gradient of X'^, and since Xldx=

X'={2J/(X)rfX + A}i;

from wliich, by another integration,

rfX

2X'
ciX, there results

a; + B =
{2|/(X)rfX + Ap.t

* The l/ji"" root of k has n values. The insertion of these gives the
iutegi'ation-ccnstants ol this »-th order equation.

+ See Reference List, XI. C. 5.



134 THE CALCULUS FOE ENGINEERS.

As examples, the results of §§ 148 and 149 may be reproduced;

but these are included in the more general formulas of last article,

§218.
220. X'"'=/(Xi"-'i)-

If X'"' be found as a function of X'"~'' ; then, since the a^gradient

of X'"~" is X'"', if we call X'"~" by the name M, the equation may
be written

J'=/(J),

the integration of which by dx gives

-, f dM

that is, give^ x'""'' as a function of x, a case which has been
already dealt with in § 217.*

221. If X'"' be found as a function of X"-'' ; then, caUing X"-='

by the name ^, we have X'"' = ^", and the equation becomes

the integration of which, by § 219, gives X'""''' as a function of x,

and this reduces the integration to the case of § 217. t
More general forms of equation, to which these last substitutions

are equally applicable, are given in the Section XI. D. of the

Reference Tables.

222. If /( ) and i^( ) be two functions of any form whatever,

and if

X=^. +
f)

+
<^(.-f),

the second gradients of X with respect to x and y may -easily be
found to be ,„^

f44-?)4*"(-!)'
Therefore, if the second-order differential equation

rf^X ,<£X^

dx"^ " dy^

be known to be true, its general integral solution is X = the

above form, and the particular forms of the functions /( ) and ^( )

must be discovered from the limiting conditions of the particular

concrete case.

* See Reference List, XI. D. 1. t See Keference List, XI. D. 2.



APPENDICES.

Appendix A.

—

Time-Rates.

(End of Chap. II., p. 28.)

The Differential and Integral Calculus was first studied as an
exact method of analysis of physical phenomena occurring in time,

chiefly kinetic phenomena. The changes of observed physical

condition occur from instant to instant, and an " instant," or small

lapse of time, was taken as the common measure by which to

compare simultaneously occurring changes of various kinds. Thus
time was taken as the base ordinate of the diagrams which graphi-

cally describe such changes. The flow of a fluid along a channel

is the simplest possible illustration of such change or progress,

and all phenomena were thought of as developing in the flow, or

flux, of time, the universal basic increment being a small flux of

time. Thus the early name given to the then new method of

analysis was "Fluxions." Unless it were otherwise specified, x' or

X was understood to mean the time-rate at which x increased, and
the relative rates of increase of various kinds of quantities were
always obtained by comparing their respective simultaneous time-

rates of progress or development. So long as investigation deals

with things which " take time " to develop or change in magnitude,

it will be found that this original method corresponds with our

innate and almost ineradicable mental habit. The corresponding

increments of such things we can hardly avoid thinking of as those

which are developed in the same time.

Appendix B.—Enbrqy-Flux.

(End of § 68, p. 33, Chap. III.)

Energy manifests itself to our means of observation and measure-

ment in various forms, such as kinetic, electric, thermal, luminous

(light), sonorous (sound), gravity potential, electro-magnetic

potential, radiant, etc. These are reciprocally convertible, and
are, therefore, all measurable in like "physical dimensions,"

namely, MV^ or ML^T"^. As energy is, or is believed to be,

indestructible, the variations it is subject to are (1) change of
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form
; (2) transference from one mass to another mass ; and (3)

transference from one place to another place.

The time-rate of transference of energy is horse-power ; a special

unit time-rate being adopted as unit horse-power. Unfortunately,

many unit time-rates of energy-variation are in use ; but they are

all, of course, of the same kind, namely, horse-power. In terms of

mass and velocity the measure of energy is E = ^M.V^. The time-

gradient of E in a constant mass M, due to variation of velocity V
in that mass, is, therefore, -;- =VM—^= V'F, where F is the time-

at at

acceleration of momentum, or the force active in the transference

of energy. It may also sometimes be usefully thought of as the

product of the momentum and the velocity acceleration.

The space-rate or line-gradient of E with M constant is

=MV—-=MV—-. -=M— =F, because V=-.
dl dl dt dl dt dt

Thus the two important energy-gradients are the time-gradient or

horse-power, and the line-gradient or active dynamic force ; and
the former equals the latter multiplied by the velocity.

It is also interesting to consider the time-gradient of E with
both M and V varying together. When a mass receives new
energy from without, it absorbs it usually (and perhaps always) at

its surface, and the new energy spreads through the mass with
more or less rapidity or slowness. New impulses of kinetic energy

by impact or pressure of other masses always enter and penetrate

the accelerated mass in this way. In such case the time-gradient,

or horse-power generating kinetic energy in the mass, is

f=v..iv^_| = v(..ivf)=j|(MV,f.v*MQ|.

Here —— is the time-rate at which new mass is affected by the
dt

,

"

kinetic energy, and (MV) is the whole momentum acquired at any
instant.

Appkndix C.—Moments op Inertia and Bending Moments.

(End of § 73, p. 37, Chap. III.)

The integral I bK^dh over the whole section is called the

" Moment of Inertia " of the section. For an I - section with
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equal flanges and web of uniform thickness, if B be the flange
width, (1-/3)B the web thickness, H the whole depth, and
jjH the depth inside the flanges ; then the

I= Moment of Inertia = ?5!(1 _/?^3)^ and the

M = Stress Bending Moment = ft—(1 - ^r^).

The sectional area is A = BH(1 -^8?;), and therefore the stress

bending-moment strength per square inch of section

=^=ftl ^-Pv"
A 6 1-I3rj

'

Girder-sections are mostly made up of rectangular parts, and the

repeated application of the method here given is usually suflBcient

for the calculation of their moment strength. In making such
calculations, free use should be made of negative rectangular areas

as parts of the section.

Appendix D.—Elimination of Small Kbmainders.

(End of Chap. III., p. 45.)

In previous examples given, the device of taking the point a;,X

at the' middle of 8a; and assuming this to correspond also to the

middle of 8X, that is, assuming linear proportionality between
SX and Sa;, has resulted in the exact elimination of all small

X
remainders. The case of — is a useful illustration of the fact

X

that such exact elimination does not always result from this

device. In this case the result is

^^8X ^ 8X

\x J , Sx Sx x^ ~ iSa:^ '

x +
2 2

the small quantity ^Sa;^ not being eliminated and only disappearing

"in the limit."

The student should satisfy himself that the same result appears

from the geometrical method followed in the text, with fig. 18
modified so as to put x and X in the centres of Sa; and SX.
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Appendix E.—Indicator Diagrams.

(End of § 111, p. 65, Chap. V.)

An " indicator diagram " is any instrumental graphic record of

a varying quantity. The lawjpy"= A, a constant, applies approxi-

mately to very many such records when the variation is not of an
elastic vibratory kind. The p and the v instrumentally observed

and recorded may not be the totals measured from absolute zero of

the quantities thus symbolised. For instance, p may be pressure

measured from atmospheric standard, or it may be temperature

v»
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If the same value of P be found from several such pairs of points,

then the curve is truly hyperbolic. Similarly, V can be found on
the assumption that P = O. Also by measurements at three points,

both P and V along with h can be calculated. Fig. 30 shows
the very simple graphic construction for finding the origin of

the hyperbolic axes. From three points ABC on the curve hori-

zontals and verticals are drawn, giving six intersections, marked
as shown on fig. 30 ; namely, {a.^) the intersection of the horizontal

through A with the vertical through B, {ah) that of the vertical

at A with the horizontal at B, etc., etc. The pairs of points are

joined by straight lines : (a/J) with {ah)
; (jSy) with (6c)

; (ay)

with {ac). Any two of these three lines wiU intersect in the

hyperbolic origin 0. There are three such intersections, and their

coincidence is a useful check upon the accuracy of the draughts-

manship. But to test whether the curve be truly hyperbolic,

more than three curve-points must be used ; they must all give the

same origin 0.

To find the index n in the formula pv"= ft to fit the curve of

any given indicator card, there are four methods. The first, most

commonly used, is the logarithmic method n = ,
" ^—t^—^ • The

log pi- log^2

second is the differential method, which gives w = £, the
p dv

slope of the curve, or -f- , being measured directly from the paper.
dv

The third method utilises the variation oi pv ; it is ra = 1 -—\£^
.

p dv

In the hyperbola
J^

' = 0; and in any other curve its deviation

from zero gives a good measure of the index n. The fourth method
may be called the integral method. Since the area under the

curve W=P^'"^~^^'"^, therefore w = 1 -f-Mi-;_££2 . The area W
n- 1 W

can be measured from the diagram by a planimeter or other-

wise, and this method has the great merit of deducing the

result, not from isolated points on the curve alone, but from

the curve as a whole in its stretch between two distant points

1 and 2.

The generality of the formula, and its power to represent

accurately recorded physical results, is very greatly extended by
shifting the axes by adding constants P and Y, the formula being

then {p + P)(w -I- V)" = ft. The measurement 'of p and v at four
points of the curve, and the planimeter integration of the area
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W= jpdv between these points, are sufficient to determine the

four constants Jc, n, P, and V. The three areas under the three

stretches of the curve between the four points being called Wjj

,

W23 , and Wg^ , the constants n, P, and V are obtained by elimina-

tion from the three linear equations

—

W^„{n - 1) =p.^v^ -p^v^ + (pi -p^)Y - Pra(«2 -
«i),

W23(« - 1) =P2«2 -Ps^a + (Pi -Pi)'^ - P»»(^3 - '"2)1

W34(m - 1) =i'3«'3 -Pi^i + (Ps -PiW - P«("4 -
''s)-

These are solved for (n-1), V, and P«, from which n, V, and P
are obtained. Then the fourth constant is obtained by the primi-

tive equation

k^ip + F^v + Y)",

taking any pair of values p and v.

With the four constants thus found, the formula will give a

curve which will pass correctly through the four points, and will

give also correctly the area under the stretch of curve between
each pair of points.

When re = 0, the curve is a horizontal straight line, giving

constant p. When n is negative it slopes upwards, p increasing

with V.

In this extended form this formula is well suited to represent

all systematic expansions of gases and vapours under various

thermal conditions, the stress-strain relations of elastic and
inelastic solids, the strain-time diagram of the slow deformation

of plastic substances, and, under certain conditions, also the

leakage of high-pressure water, gas, vapour, or electric charge from
storage vessel^, batteries, condensers, etc., and the laws connecting

velocity with wind-pressure and with viscous fluid resistance to

flow.

Appendix F.—Reouehent Harmonic and Exponential
Functions.

(End of § 153, p. 89, Chap. VII.)

The combination of these two cases gives the following interest-

ing much more general result.

Let A, B, C, 6, /3, a, p, q, k be constants, and let the primitive

function be

X = C -1- 6^*+''{A sin {px + q) + 'B cos {px + k)}.
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Let p2 = (Slog 6)2 +p2 and 6 = tan-' / , ,piogb

so that sin (9 = -^ and cosfl =^M^,
P P

Then direct differentiation and the ordinary trigonometric com-
binations

sin ^ cos 6 + cos <^ sin = sin {if> + 6)

cos ^ cos ^ - sin ^ sin 6 = cos (tf> + $),

give

X'= p¥'^+''{A sin (px + q + O) +B cos (^« + A; + e)}

X"=p^^''+'^{Asm(px + q + 2e) + Bcos{px+ 7c + 20)}

X""' = p''6^»:+«{A sin (px + g + »6I) + B cos (px + k + nd)}.

The only restriction among the constants is that the constant p
is the same in the two harmonic functions. If x measures time,

the equality of the two ^'s means that the two superimposed
vibrations have equal periods or frequencies. Their difference in

phase is {k — q), and this is unrestricted. In all the successive

X- or time-gradients, the phase-difiference, as well as the frequency,

remains the same in the two superimposed harmonics. In each

gradient the frequency is the same as in the primitive. The
'phase-difference between each gradient and the next lower gradient

is ^ = tan~' —i-—-. The factor J^*+» represents the damping

down of the vibration, as its energy is gradually reduced by viscous

or similar dissipative resistances. The amplitudes of the succes-

sively higher gradients are successively less in the ratio p. This

ratio p depends equally upon the frequency (the period = —) and

upon the vigour of the damping coefficient b^ or ft log 6.

This proposition can evidently be extended to the super-

position of any number of harmonic vibrations of different

amplitudes A, B, etc., and of different phases, so long as the

frequency is the same in all and so long as the same damping
coefficient applies to all. It is of the highest practical im-

portance in modern electrical industry. See also Appendix Q,
page 184.
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Appendix G.—Successive Reduction Formula,

(End of § 156, p. 91, Chap. VII.)

The " reduction formula " of § 126 may be applied repeatedly.

Such application is represented by the general formula below.

The repeated application in concrete special cases is, however,

simpler to appreciate than is the general result.

Let X and H be any functions of x.

Let D be the m'* a;-gradient of X = X""'.

/(m)

r nm+i)
Tlien D' = X"»+>' and Idx= Udx'^K

Now JBldx = D jldx - [jy
I
jldx I dx,

Applying this repeatedly,

{x'S.dx = X iudx - JX' judx^ = X [•S.dx - X' j^dx^ + jx" ^Udx^

r rm m m
= XJ'Bdx-X'l ndx^ + X" Bdx^-X'" 'Bdx^+--- •

r(n) r rM
+ x"'-"l ndx^T x'^n ndx'^+'K*

By this means the function X and its derivatives are brought
outside the sign of integration except in the last term. By
carrying the series to the proper number («) of terms, in the

last term X'"', or the w"" a;-gradient of X, may be reduced to 1 or

to a constant, or to some simple function of x which combines
with the »" integral of B to form an integrable function. This
last term may also be transformed to

Jx<"-'i
I
rUdx^ \ dX,

in which form it may possibly be more easily integrable,

* See Reference List, I. 8,



w
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between fi and 8 independent of M, M', H, and H'. This relation

is (1 + 8)2(1 - 8) = 4(1 - ^){2 - (1 + ;8)S2}
,

a relation which is very closely approximated to by the simpler

equation

;8= -805 + 1(8 - -72)2 + (8
- -72)8.

A minimum value of ^= "805 is reached at 8= about '7. It is

shown that for the standard case of a uniformly distributed load

on a beam freely supported at its two ends, these adjustments

lead with very close approximation to the proportion

8= -72
'^'

T„L^B

where M^ is the central bending moment, L the span, B the flange

width, and T„ the outside normal stress on flanges.

Appendix I.

—

Economic Design op Turbines.

(End of Chap. IX., p. 117.)

In The Engineer of 27th May, 10th June, and 17th June 1904,

will be found a series of interesting calculations by the author on
"Dynamic and Commercial Economy in Turbines." It is there

shown that for greatest dynamic efficiency the angles between the

periphery of the rotating wheel and the blades should be equal at

entrance and at exit, that the tangent of this angle should be
double the tangent of the peripheral angle of the fixed entrance

guide-blades, and that the peripheral velocity of the wheel should
be half the peripheral component of the water entrance-velocity.

The angle of the rotating blades being called ^, that of the fixed

guides y, and the water-velocity through these guides w, and the

wheel-velocity b, these conditions give

2 tan j8 = tan y and 6= — cos y.

The linear velocity with which the water is fed into, and dis-

charged from, the wheel is then w sin y

.

Calling the dynamic efficiency e, the power in ft.-lbs. per
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second delivered by the water to the wheel H, and the water-

covered gate-area A, we find for water-turbines

€= cos^ y and H = -97Aw^ sin y cos^ y.

The smaller y is made the nearer does e approach unity ; but the

y-gradient of the power developed is

H' = -dlAw^ cos 7(1-3 sin2 y),

and this gives maximum power at

sin2y= ^ory=35° 16'with .-. ^ = 54° 44' and £=|.
o

This would he the best angle for the design if, for a prescribed

size of wheel (measured here by A) and prescribed entrance-

velocity IV, the chief aim was to obtain maximum horse-power

without consideration of water-consumption. This, however, does

not mean maximum commercial economy.

The power " in the water " consumed is — Suppose that the
e

cost of each extra unit of water-power consumed is p, while the

value of each extra unit of power developed (H) is h. Then the
" net revenue " or " working profit " obtained from the use of the

turbine is shown to be

E = -97A7m»3 sin y^^cos^ y-lV-Q

where C represents initial costs incurred whatever power be taken
from the wheel.

The y-gradient of R is

R' = -^IKhvfi cos y^l - 3 sin^ y - f ) .

The maximum net revenue R for given size A and given water-
velocity w is thus obtained with guide-blade angle giving

sin^ 7 = if 1 - ? I and e = _ -f- - E-,
^ ^\ hj 3 3 h'

which y is less than for maximum power (H' = 0) in that S is here
h

subtracted from unity. Here ? is the ratio of cost of extra unit
h
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of water-power consumed to value of extra unit of power utilised.

With y so adjusted the maximum revenue is

For different ratios of p to A the following are the results :

—

p
h
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this angle the less is the efficiency, but the less also is the size of

turbine required to develop the prescribed H. Let K', A', and «'

be the y-gradients of K, A, and t. The above equation gives

K' = aA'-pH-i-.

K is a minimum when K' = 0, and this gives

€ a

which, expressed in terms of y, gives the criterion

l-3sin^-y _^^,3j?

l'94sin*'y a

From this equation both H andA have disappeared by elimination,

showing that the angle y giving maximum commercial economy
does not vary with the horse-power required, and is the same for

large and small sizes of turbine. In finding it the water entrance-

velocity w has been assumed constant, which practically means
that the available head of water is fixed. The best y depends on
the cube of this velocity, and on the ratio of the extra working

costs per extra unit of water-power consumed to the extra capital

costs per extra square foot of gate-area in the size of turbine.

The following are the numerical results of the formula :

—

y
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gradient is zero at the place of maximum or minimum, on either

side of this exact place there is a considerable range of base con-

dition throughout which the deviation from maximum or minimum
is so small as to be of no consequence. Indeed, in industrial

problems the really best adjustments are hardly ever coincident

with the exact values found theoretically, and for this reason that

the theory never includes the consideration of every influential

element. Minor elements are left out of the account in the

theoretical calculation, and when the theoretical result has been

found these minor elements quite rightly indicate the advisability

of a small deviation from it in one or the opposite direction.

In the author's work. Commercial Economy in Steam and other

Heat Power- Plants, published in 1905, many very interesting

physical and financial maximum problems in the economic use of

steam are worked out.

In this work the author enunciates for the first time a definite

measure of industrial economy applicable to all productive efFort.

P
To this the name " economy coefiBcient " is given. It is ^=~ ,

01

where P equals the value of any quantity of the product, C the

cost of production of the same, and T the " time of turn over."

If P be taken as the tim^-rate of production reckoned at its final

value, then CT will be the " working capital " permanently held

up in the maintenance of the manufacture ; so that the economy
coefficient may also be expressed as " Value of Annual Production

-7- Working Capital." This working capital does not include the

fixed capital sunk in plant, buildings, etc.

The economy thus measured is capable of being raised or lowered

by changes of various kinds in the methods of production. If

such change afieot all three factors P, C, and T, and if the change
be capable of being made gradually, then the concurrent rates of

change of these factors may be called P', C, and T', these being,

say, the a;-gradients, if x be the measure of the element of manu-
facture which is being varied. Maximum economy is reached,

p
so far as it is affected by change of x, when the !B-gradient of —

CT
is zero ; that is, when

F^c;_ r
P C T

This criterion of maximum commercial economy is quite general in
its applicability to every kind of productive industry in its

development by every sort of change capable of continuous
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gradation—whether in the manufacturing experiments the change

be actually made gradually or suddenly.

If P be the quantity produced per unit time and e a coefficient

of physical efficiency giving the ratio of this product to the

p
quantity of raw material consumed, so that — is this latter

£

quantity; if to be the total cost per extra unit of such raw
material consumed together with the cost of working it up to

the condition of the finished product ; and if p be the final value

per extra unit of the product P ; then, if p and w are constant,

any modification of the manufacture which affects P and « con-

currently, gives a rate of variation of the net revenue

-="v{fe-')4i-
Thus the maximum revenue is obtained when the rate of

production is adjusted so as to make

iK-P.-l.
pyp w

Here the size and character of plant is supposed fixed, and this

equation gives the most commercially economic rate at which to

work the given plant.

The other most important commercial problem is to determine
the best size of plant for a prescribed rate of production P.

Here P is constant (P' = 0). With a larger or more expensive
plant the efficiency may be raised so as to lessen the working

mP
expenses in proportion to — , but at the same time the capital

charges are raised. These capital charges may be taken as equal

to an initial constant plus hVf{i) where A is a constant factor and

/(«) is a function of the efficiency dependent on the kind of

industry investigated. The total annual cost for the prescribed

rate of production P is thus

= Constant + ftP/(e) +— ,

c

and this is made a minimum by the adjustment

w and k being among the prescribed data, and /(t) and therefore

E being functions of the size or prime cost of the plant, this
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equation determines the most commercially economic size of

plant to use. A particular example of the calculation has been

given in Appendix I,

Appendix L.—Indeterminate Forms.

(End of Chap. IX., p. 117.)

Whatever meaning be attached to the symbol oo , the ratio —

is clearly and definitely or zero ; while the ratio — is definitely

00 . But the three quantities - , — , x oo are more difficult to

evaluate. They are termed " indeterminate." They arise as

ratios and products of variables or fluxions, when these variables

take special values, the said ratios and products having no
ambiguity or indeterminateness when the variables have other

than these special values. Thus X and ^ may be functions of

X, both of which copie to zero for some special value of x.

There is in reality no such thing as a ratio between two zeros

;

a ratio can exist only between two quantities, and zero is not a

quantity. The meaning attached to the symbol - must, therefore,

be in a sense conventional. The meaning attached to it is the

ratio of X to .Jf when these functions have any corresponding or

simultaneous minutely small values. To give this meaning real

significance both X and J^ must pass through zero as continuous

functions of x ; therefore they can both be represented graphically

by curves on a scaled diagram. Let fig. 31 illustrate such graphic

representations. Both X and M curves cross the horizontal axis

at the same point Xy Draw tangents to the two curves at this

point. These tangents coincide with the curves for minutely
small distances on either side of the touching point, and all

minutely small values of X and of ^ are given equally well by
the curves or by their tangents. The slopes of the tangents are

X' and
J^' taken at Xj, written, say, X'j and ^\. For any small

+ Sx on either side of a^, the values of X and J^ are thus X'jSa;

and ^\Sx . Concurrent values of X and J^ are those in which
the 8x is the same in both. It follows immediately that at any
point close to x^ on either side of it
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As neither X'j nor ^\ is zero or ambiguous in value, ( -^ j
, or -

according to the meaning above assigned to this symbol, can be

Fig. 31.

evaluated as the ratio of the two a;-gradients at the particular

lue Kj.

In this demonstration it is assumed that both curves X and Jf

Fig. 32.

pass through the zero axis without break of gradient, that is, that

both X' and Jf' are continuous. In fig. 32 are shown two pairs

of curves in which, while the functions X and ^ are themselves



-^ ) have the same value as ^, and can be evaluated
Jp/i

152 THE CALCULUS FOR ENGINEERS.

both continuous, the gradient of one of them, X', is discontinuous

X' X .

at Xy. In this case -^„ and, therefore, also -^ , has a certain definite

value for any + Sx beyond a;^ and another different definite value

for any - Sx below a~.

X'
If -^ also assumes the form — , similar reasoning shows that

by finding the ratio of these second gradients. The best graphic

demonstration of this is obtained from a diagram with x as Isase

and X' and Jp' as ordinates to two curves. Then X and Jp for

any ± Sx on either side of ajj are the small triangular areas under
the curves with common base + Sx. These areas are proportional

to X' and Jf', and, therefore, also to X" and Jp".
If at x^ the value of X becomes oo and that of Jp zero, then

construct an a;-diagram with two curves giving = and ^. At XiX
the = curve, as also the Jp curve, both cross the zero axis, andX
the above rule may serve to evaluate ( =^ )

= (Xi^), = oo x 0.
\l/X/i

(1
\' X'

^j = -^, we have

(XJX=-(X='|;)^;

from which can also be deduced

(xjx=-(j2|;)^.

But neither of these la.st two formulas is useful, because if X
becomes oo at any finite value of x, so also does X'. The

function (^j, however, may often be differentiated in terms of

X so as to eliminate entirely both X and X'. Thus

(XJ)i = oo X =TYh
\X/i

usually gives a definite value. Otherwise the product XJf may
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reduce by cancellation to a function of x which does not give an

indeterminate value at x. This latter method must be adopted when

X^x, because (—Y=-\ gives (a;J)„ = - a;^
J' = - oo 2 x 0,

since, if ^ = at a; = 00 , necessarily 3s,' also = at same limit.

To engineers the most interesting case is that of the commonly
used expansion curve ju?)" = K. This gives infinite volume for

zero pressure. Here«! = ( — j» and^i;= Ko' "= E"y » .

In this case at zero pressure,

pv= if »>1
= h „ K=l
= 00 ,, n<\,

the last case being for a curve lying above the hyperbolic or " gas

isothermal." This last curve corresponds to expansion accompanied

by very rapid heating. The work done by the expansion down
to zero pressure from pjUj is (see § 110, p. 63)

yy

-

Pi^i - {P«)p=o- Pi^i iin>l
n—1 re-

1

= 00 „ ra<l

When « = 1, W, according to this formula, takes the indeterminate

form — ; but the special integration

f2 y
j
pdv = pjVj^ log -?

J

1

^1

shows that the value is 00 when p^ = 0, and .•. Wj = 00 •

If X, = =o and if, = co,.then^ = |l= ^yi.^= 0;

to which the first rule given applies. Taking the ratio of the

a;-gradients, there is found

As it stands this is of no use, because both X'j and
J^',

= xi . But
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by cancellation, or otherwise, the ratio -^^ may be reducible

Si
X

to determinate form, while -^ is not so.

A theoretically important case is the value of x log^ x when x = 0.

It takes then the form - x oo . Taking x logj x = -~— , and
1/x

differentiating both numerator and divisor, we find the value

=- = - a; = at the limit.

XX —
x^

The discussion in § 104, page 60, affords another illustration of

a;"— 1
the theoretical importance of this method. Here was

n
demonstrated graphically to equal loge x when n = 0, at which

value it takes the form -. Considering x constant, the re-gradient

of («"- 1) is x" logj X, and the n-gradient of re is 1. Since a;°=l,

a;" — 1
the method now explained gives at once = log^ x when re = 0.
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NOTATION.

Letters near the beginning of the alphabet denote/ constants

which may in general be positive or negative, whole or fractional,

real quantities or numbers. Those near the end of the alphabet

denote variables.

The symbol = stands for "denotes" or "is identical with."

The symbols >, >, <, <t stand for greater than, not greater

than, less than, not less than, respectively.

The symbols /( ), ]?( ), ^( ), i/'( ), denote any function of the

quantity placed inside the brackets, except when restricted by the

context.

X, B, ^, X a^re briefer symbols for functions of x.

L, M, N, P, Q, E also sometimes denote functions of the variable,

Y=any function of the variable y which is independent of x.

/(a)=the same function of a that /(a;) is of the variable x.

~dx
' " dx^

'

~ dx"

Y'Jl- Y"^— — -Y'"'^^
dy

'

dy^' dy"

rf/(X). ,, ._df{Y)

^=partial differentiation with respect to x.

/(a;,y)=the differential coefficient with respect to x of the
' function f{x,y) where x and y are independent variables.

If I'

f (x,y)=f (a;,2/)=the second differential coefficient of f(x,y) with
*" "* respect to x and y, where x and y are indepen-

dent variables.
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I
Xrfa;=Integral of X with respect to x

l\dx^= I
[Xdx'^=

I
jxdxdx^

1 1
jxdx I dx

I
Xjdsi^=

j I
-- {nfimnbois)Xdx''= / /

- - {n/m^ou)Xdxdx - - (ndx's)

jjf{'«,y)<iy<io:=f
I
lf(x,y)dy

I
dx

5 or S( )=Sum of a series of terms of the same type as that

following S or placed within the brackets.

value towards which/ /{x)dx= lf(x)dx =the limiting
J a J I r ~]i

L- -i» '2f(x)Sx approaches as Sx ap-

proaches the limiting value 0.

/ f(x)dx=
j
f(x}dx

to!=1x2x3 (m-I)xw; (n being a positive integer).

logj(,a;=log 30 in the Decimal or Common system of logarithms.

logja;=log X in the Natural or Neperian „ „

6=2-7182818 =1 + — + —
+5-J

+ = base of Neperian
logarithms

exp(a:)=e'=l + y +
f?

+ 3T
+ " "

"
"

Bj, Bj (Bernoulli's Numbers).*

In trigonometric functions the angles are given in " circular
180°

measure," the unit being the radian which = or 57° 17' 45"
IT

nearly.

r(w)= / e-V-'^dx (the Gamma Function). See X. 1-6.

Abbreviations.

Sp. Case=Special Case
Exc.=Exceptional Case, or Case of failure.

* See note at end of Section VIII,
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I. GENERAL THEOREMS.

1. lx'dx =X + C
/•(21

j X"'dx^ =X + C^^ + G,x + Go

fM

j
Xmx- = X + G^.^x"-' + C„_2!B"-»— - + da; + Co

2.
j

f'{x)dx=f{h)-f{a)

3. \ af{x)dx = a\f{x)dx

4. j {X±'H±^---)dx = J
Xdx±

I
Udx±j^dx-.-.

5. Xc?a;= X<?a!+
j

XcZa;

J a ja j 6

fb fa
Sp. Case: Xdx= - Xdx

j« Jb
fx, rx,

6. f{x)dx^ f{4.(X)}4>'(X)dX

J ^1 j Xi
where x=^{X) , . <^^(X) cZa;

Sp. Case: {xdx=(^,dX
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7. (Integration by Paets.)

jxndx= xjndx-
I ix'JHdx \dx

01jxu'dx= xa - JTrnx = xs - [h^x

Sp. Case : / Xdx = Xx - I xdX.

Appendix M.—Integration by Parts: Special Cases.

(I. No. 7.)

The special case H' = «" is worth notice. It gives

[Xx'^dx=?^ L_ (x'x'^+^dx.
J m + 1 m+lj

With m= 1 : jXxdx =^ - i- jx'x^dx.

„ m = 0: jXdx=Xx— jX'xdx.

„ m=-l:/

—

dx=X\ogx- iX'logxdx.

With

X = (log a;)" : fa:'" (log xfdx=
«="'^' (log «:)" _ _n Ln, /^ ^\n-ij^_

With X = loga;: fa;™loga;c?x= -^^^loga;-—J-V

„ X = loga;: / H' log airfa;= B log a; - j—dx.

All the formulae of Section IX. are deduced by help of
this I. 7.
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8. [ XHdx =X I H(^a; - X' TW + X" rUda^ +— -

Sp. Case .n=l: lxdx =^X- ^^X' + Jx" - f,X"' + etc.
J 1 1'2 3! 4!

9.
I
^dx= 2-3026 - - - - logi„X + C = log. X + C

10. Appboximate Intbgbation.

(i.)

I

Xf?a;=*^(Xo+2Xi + 2X2 +— - + 2X„_, + X„)

where X^ is the value of X when x = a

1> -^1 !) II J! >) — * +

>• -^2 " " " " —'*"*"

IJ ^r )I )> j; jj —* + ''•

j:

with (6 - a) divided into n equal parts giving (n + 1) values of X,

(ii.) (Simpson's Kule.)

"b , ,

Xdx='L^i^ X, + X,, + 4{X, + X, + X,+ ---.)

+ 2(X2 + X, + X,+ ---- + X,„_,)|

where Xq , Xj , etc. = as in (i.)

;

with (6 - a) divided into 2m equal parts giving (2« + 1) values of X.

(iii.) f{x)dx = hh{f(b) +f{a)} +f{a + h) +f{a + 2h)

+/(6-/i)]

* See note at end of Sect, VIII,

*
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11. Method op Undetermined Coepfioibnts.

(i.) If a function be expressible in a certain form containing

unknown coefficients, these coefficients can be de-

termined by transforming the identity and equating

coefficients of terms whose variable part is the same

function of the variable {e.g., the same power, or

the same trigonometrical function), or in which the

variable is absent (constant terms).

The transformation referred to may be :

—

(a) Differentiating both sides (as in III. B. 18).

(6) Clearing of fractions (as in II. E. 2, etc.).

(ii.) Another method : Give to the primitive variable as many
different values, in the identity, as there are coefficients

to be determined ; whereby we get as many equations

as are necessary to determine them.

Gbnbeal Note re Imaginaries.

Some of the formulas here given contain parts which would

become imaginary if the quantities involved took values outside

certain limits : becoming, e.g., square roots and logarithms of

negative quantities, inverse sines of quantities greater than unity,

etc. When a definite integral is deduced from the indefinite one,

these imaginaries, explicitly or implicitly, cancel one another, if

the subject of integration is itseH real. !But, in many instances,

two or more forms are given for the integral of the same function

(e.g.. III. B. 6, VI. 5, 6), of which that one is to be selected

which, for the values of the constants in the particular problem

under consideration, is free from imaginaries.

Some of these formulas contain parts which are imaginary for

certain values of x only, whatever the constants may be, and

others do so for all values of x when the constants are outside

certain limits. E.g., the formula sin"^- is imaginary when x>a,
a

but not when x lies between - a and + a. On the other hand, the

formula —^ sinh
~'^

{ x /— \ contains imaginaries when h is

Jb I V a )

negative, whatever the value of x may be.

In these classified tables, the conditions under which a formula

involves imaginaries are, as a rule, pointed out in cases of the latter

sort, but not in those of the former.
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SPBCfAL Note as to Logarithmic Terms.

When a term of the form A log X, where A is a constant, occurs

in an integral, it becomes imaginary when x has such values as

make X negative ; but in such cases A log ( - X), which is real,

may always be used instead of A log X, since it has the same
differential coefficient as A log X. This note applies to III. A. 3,

5, 11, 16, etc.

Note re Inverse Use op Tables to find Differential
COEPPICIBNTS.

Although the chief purpose of these Tables is to assist in

Integration, they may also be used to find gradients or differential

coefficients of given functions. To use them for this purpose,

search for the given function on the right-hand side of the page.

Its a-gradient is the corresponding quantity on the left-hand side

of the page with the sign of integration I and dx removed.

The function to be differentiated will not, however, always be

found under the subject-title proper to the function, since the

arrangement of the tables classifies differentials, and not integrals,

according to subject. For instance, the differentials of sin~'a;,

in"', etc., sin'

Algebraical.'
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II.—CHIBr METHODS OF TRANSFORMATION.

A.- Express the subject of integration as the sum of a series of

terms, and integrate these separately (see I. 4). (Integration by
decomposition or separation.)

E.g., flog{(l + 2x){l + 3x)}dx= f{log(l + 2x) + log(l + 3x)}dx

=
I
log(l + 2x)dx + / log(l + 3x)dx

.

B. Add and subtract the same quantity. E.g.,

[ xdx _ /'(a + 1) - I J
Jl + 2x~J 1 + 2.X

'^^

^i I T~2(l + 2a;)
}''''

C. Multiply (or divide) numerator and denominator by the

same quantity. . E.g.,

f, 3 7 _ /'tan'a;(l H-tan^a!)da;

J J 1 + tan^a;

_ rtanVitana:

J 1 + tan^a;

Sp. Case

;

m +nJR m^-n^U

D. Expand in a series (see p. 146). E.g.,

I J{1 -%mn^x) = / 1 ^ + i^"'^"'' + M^''^'" +
-}dx.

Sp. Case : II. F.

E. Eesolve rational fractions into partial fractions. (See p. 167.)

F. Express a product of powers of sines and cosines as a sum of
terms, each consisting of a sine or cosine multiplied by a constant.
(See p. 168.)
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G. Substitute /(X) for x and/'(X)dX for dx. (See I. 6.)

Sp. Case : /(X)=i)X (- g = a; 1

dx =pdX /

In the case of a definite integral, change the limits correspond-

ingly (See I. 7), or else transform back to x after integration,

before assigning limits. (See p. 148.)

H. Differentiate or integrate an integral with respect to any
quantity in it which is not a function of x, and a new integral is

deduced.

K. Use integration by parts. (See I. 7.)
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II. D. Chief Methods of Expansion in Series

:

—
1

.

Binomial Theorem.
2. Exponential Theorem.
3. Expansion of Log,(l ±x).
4. Trigonometric series derived from the preceding expansions,

by use of imaginaries.

5. Taylor's Theorem or Maclaurin's Theorem (including 1, 2, 3,

as special cases).

6. Fourier's Expansion in series of sines and cosines.

7. Spherical Harmonics, Lamp's Functions, Bessel's Functions,

Toroidal Functions, etc.
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II. E. Partial Fractions.

F(a;)_Aa;"' + Ba;"-! + - - - - + H
f{x) ax" + bx"-'-

+

+ h
where m and n are positive integers.

Y(x)
1. If ni'^n reduce -^ by ordinary division to an integral

function of z, + a fraction of similar form to the above with m<n.

2. First Case. /(a;)=a product of simple factors, all different.

f{x)=a{x -p){x -q) {x-s)

f{x) x-p x-q x-s'

To find P, Q S, which are constants, use 1. 11 (i.), (&).

Otherwise -^ip) p,_^(cL) ,

3. Second Case. Some factors repeated.

Kg. f{x)=a(x-p)\x-q)\x-r)..-

fix) x-p^ {x-pf^ {x-pf^ x-q {x-qf^x-r^""
TofindPiPj.-.-usel 11. (i.).

4. Third Case. /(») not a product of real simple factors, but
contains quadratic factors all different. E.g.

f{x)=a{x^ + kx + l)(x^ + mx + n){x -p)(x -q)

g(4_ Ka! + L Mx + TS P
f{x)~x^-\-kx + l x^+ mx+ n'^ x-p'^

Determine the constants K, L, M, etc., by I. 11. (i.).

5. Fourth Case. Some quadratic factors repeated. E.g.

/{x)=a{x^ + hx + Tf{x'^ + mx+n){x-p)
'e(x)__ KjX + 'Li K^x + L^ _K^+L3_
f(x)~x^ + kx+r (x^ + kx + iy^ {x^ + ke + iy

M.x + 'N P
+ -„- + +

x^ + mx + n x-p

Determine the constants Kj Lj etc., by I. 11. (i.).
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II. F. Sines and Cosines.

1. Use repeatedly

Sin mx cos nx=-- < sin (m + K)a; + sin (m - n)x V

Cos mx cos nx=-- < cos (m + n)x + cos (m - n)x >

Sin mx sin nx=— < cos (m - «)» - cos (m + w)a! !

^.ff. Sin'a; cos 2a! cos «=— sin 4a; - =-; sin 6a; - =-5 sin 2a;

.

8 lo lb

2. Alternative method. i=J-\.

Use Xse" .-. 2 cosa: = X + X-i
2isina; = X-X-i
2cosHa; = X'' + X-"
2i sinraa;=X"-X-".

Express sines and cosines of x or its multiples in terms of X.
Multiply out. Collect pairs of terms of the form C (X"±X-"),
and reintroduce sines and cosines.

E.g. Sin'a; cos 2a; cos x

^ (X-X-i)^(X2 + X-2)(X + X-i)
(2if22

= - 1 jt,{X« - X-« - 2(X* - X-*) + X2 - X-n
16 2« "

— -
T-R 1^^ 6a; - 2 sin 4a; + sin 2a;}.
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II. Gr.

—

Substitutions.

1. {ax+bfdx==—X"dS. ]'a I

, yK^ax + b.

2. V{ax + b)dx= ~-F{X.)dX\

P

Sp Case: &= ±-^. (See VI. head note.)

5 dx -dX X=i
xj{ax^ + b) ^{a + bXP') ^-

x

X=((Kt! + 6)V*.

5. 'E{ax^ + bx + c)dx = 'E{a{X? + k))d:yL

v'Ka; -«)(«- 6)} 1-X2 ^v/C-^O-

7. Y{x'^ + k'^)dx = 'E{k'^s&d^X)kaw''XdX.

X=tan-ii.
A;

Otherwise = 'E{kHosh?lL)h cosh X«?X

X=sinh-i^.
ft

8. r{(a;2 - A2)4}cia; = F(A; tan X)A; sec X tan XciX

ft

X=seo"^^-.

Otherwise = F(ft sinh X)A; sinh X . rfX

X=cosh~i—

.

9. F{(ft2 - a;2)i}cZa; = r(ft cos X)ii cos XrfX

ft"

X=sin-if
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10. r(a;, log^)dx = F(e^ X)e''dX

X=log^.

11. 'E(bcosx + eamx)dx = 'F{^(b^ + c'^)smX}dK

X=a; + tan"'— .

c

Otherwise, as in II. G. 12.

12. F(a + 5cos« + esin.)c^. =F{«-±^±2g^:iM^)^^

X=tan —

.

2

1 3. F(a + 6 cos^a; + c sm^ajjtfo; = F <
X2
—

f
1—X2

X=tan a;

.

14. F(cosa:,sin2a;).sina;rfa;= -F{X, (1 - X2)}(iX

X^cosa;.

15. F(sina;, cos^a;). cosa;(£a;= F{X, (1 - X2)}dX

X=sin X

,

16. F(8in-ia;)c«a; = F(X)cosXtO:,

X=sin~i X

and similarly for other inverse functions.
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III.-IX.-TABLE OF INTEGRALS.

III. ALGEBRAIC FUNCTIONS.

III. A. Mainly Rational.

1. \adx =C + ax.

2. CBMa; =C+? .

/ « + l

[Exc. w = - 1. (See III. A. 3.)]

3. [^ =0 + 2-302585---- xlogios;

= 0-1- log^a;

.

4. {(ax \ hfdx= C + , V («•« + *)''+^
j^ (ra-t-l)a^

'

Exc. n=-\. (See III. A. 5.)

- f dx ri ,
2'3026 , / , ,\

5.
I

=^ = + X logUax+ o)
J ax + b a

= C + —log,{ax + i).

6. I
=~rfa; = C-)-

—

x+ =

—

logAax+ b).
J ax + b a (f

'

7. lar{ax + bfdx. Use II. A., or IX. A. 1, or III. A. 20.

8. f-^„ =C-Htan-'a! = C-cot-ia;,

9. f-^ =C-t-|log,l±? = C-f-tanh-'a; [x<U
J 1-x^ 1 ~x ' '

= C + ^ log«^ = C + coth-'jc [a:> 1]

.

10. f
-— = -7^^. tan-'xj %+C when a6> .

(See III. A. 9.)
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,, f dx __!__, /Aa: + B\

j{Ax + B)(ax + b)~^'^Ab-aB°^'\ax + bJ'

12. \-
J
where to is a positive iateger or 0, and n a positive

J l+af integer, li m<^n, use II. E. 1 ; it m<n, thus:

—

= C + (—^)"logXl +x)-^'2 {cos'^*^ + 1> log,(^^ - 2x cos r^^ + 1)}

2 -^ ) . r(m+l)7r, .1/
H 2,-{ sm-i ^tan M

Ix - cos—

\

n \

N.B.—If n is odd, r takes the values 1, 3, 5 (w - 2).

If TC is even, r „ „ 1, 3, 5 {n-Vj, and the

term i ^Ioge(l +a;) is omitted.

fx^dx
1 3. I — ^ where wi is a positive integer or 0, and n is an odd

J ^ -^ positive integer.

= (
- l)™+i/'?!^

, where X= - x. (See III. A. 12.)

fx^dx
14. I ^ where wi is a positive integer or 0, and n is an even

^ positive integer.

= c + liogXi -x)- i::^ iog,(i + x)

_ly i co/('^ + l)" log,(:.^ _ 2x 00^"^+ 1) I

n

r(m+l)ir, J
sm-^^ ^tan ^

sm

—

n
where r takes the values 2, 4, 6 (w - 2).

See III. A. 12, a m and w are positive integers.

=
t( -W ir^ "^^"-^^K -t) '''% _

See III. A. 13, 14, if m and n are positive integers.

Otherwise, see IX. A. 1.
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16. f-^l =C + ^A^^tan->^^+A where A^V-iae,
Jax' + bx+ c V(-A) V(-A) ifA<0

= 0+ 1 log.|^^±*ZL^ ifA>0.

, „ f(Ax + B)dx A , / 2 , 7, , \ ,
2aB - Ah f dx

17. 1^—5—=-^i

—

=—-\oQ.{ax^ + ox + c) + I—s—i
•

jax' + lx + c 2a ^'^ '^

2a J ace" + 6a; + c

(See III. A. 16.)

18. I ^=

—

dx where X=aa:^ + bx + c
J X"

= ;w , , ^^—r-\ 1=^. (See IX. A. 4.)
2(?i-l)aX»-i 2a ;X" ^

^

Sp. Case : A = 0. (See IX. A. 4.)

fAx™ + Jix'"~^4- - - +K
19. — :r—- —- dx, where m, n are positive integers --

J ax" + bx''-^ + +p '
' f 6

Keduce by II. E. to terms like these :

—

JAx^dx, 1^^^, 1^^, I
,^-,+

^
dx, Jr^±^J^;

J Jx-p J{x-pY Jx^ + lx +m J{x' + lx+ my

for which, see III. A. 2, 5, 4, 17, 18.

20. \x^{ax'' + hyi<^dx = S^\'X?*''-'-{±—°\ <iX

where X=(aa;'' + 6)'"

_ _ 2_ [l,{m+l)ln+plqr^q _ (;j\
- (m+l)/»-3>/S-IX^+9-lc?X

where X=(6a;-» + a)W«.

Use the former when is a positive integer.
n

latter „ -—- +^ is a negative integer.
" n q

In either case, expand the binomial factor and use II. A. and

III. A. 2.
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Definite Integrals with Numerical {or Particular) Limits.

= ; ^ where n and m are even positive in-

0^ + ^"
n sin

<"' + ^)^ tegers, and m< «

.

n

2 I

^^

J 0^(1-
on I ax IT IT .» 1
22. I — = — cosec— iira>l,

' -'" -af) M n

23.
I

,/=" , =-!Lcot^ „ „
„;/(l+a!") n n " "

„.
I

yjo -TJo ]u,Ji _i.\im,-vV)V{n-irV) (See X. 1-6.)

25.

26.

r{x'"+x^)dx _ r(m+i)r(w-

I (1+^)'"+"+^ ~ r(m + M + i

I ^ ' r(m + w + 2)

J ^
-a;)™+'

i} II

)» »)

27. rV(a_c«)Ma;=a™+»+^%±lM^)»
I ^ ' r(m + « + 2)
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III. B. Quadratic Surds.

1. \{ax + 'b)idx= G + ^{ax+ V)i.

2. J/Km + hf}dx = ? jXf{X)d{X)

where X=(aa; + l>)i

.

Sp. Cases :

—

(-?)
J
x{ax + V)Mx = C + ^{ax + &)l - ~lax + 5)?

.

(«) [-7-^i = 2
f^ . (See III. A. 10.)

3- /(^^j =C + log,{a;+ (a=^+l)n=C + sinh-^.

4. [ .f'"
=C + loge{a; + (a^-l)i}=C + cosh-ia!.

5- / 7^ s^T = C + sin"ia; = C - cos~ia;

.

J (I- ar)i

6. f , f'^.vx -C + i-log,{a!> + (aa;^ + S)J} if a>0and6>0

= C + -^sinh-iwA/r „ a>0 „ 6>0

= + -^ cosh-la; ^Jl? „fl>o „ 6<0

= C + ;^)Sin-V-f „«<0 „ 6>0

Otherwise : put x=X /- or a;=X . /( —\ and use III. B.Va VV «;
3, 4, or 5.

7. f.-?^ =C+i(aa;'^ + &)».
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8. /"__^__ - _ f-J^ where X=^ . (See III. B. 6.)

Sp. Case : / — sn = C - sinh~' - = C - cosech"' x
Jx{l+x^y X

I — —r = C - cosh"' _ = C - sech"* x

.

jx{i-x^y X

9.
I
{Ax + -B\ax' + b)hdx= C + {^x^^ + |a; + ^)(«a:' + *)*

+?fr^AU- (See III. B. 6.)
2 J {ax' + o)i

8p. Case : L{ax'' + h)Hx = C + ^{ax^ + bf.

1 0.
I ,-77 3ri = C + vers-i- = C + cos-^ .

J {2ax - arp a a

in [ d^ _p (^ax±si?)^

J x{2ax±x')i~ ax

,„ / dx n , f ^X
J (ax^ + 6a! + c)4

'^ ^'*j {ia^T^ + 4ac - 62)»
*

Where X^a; + A . (See III. B. 6.)

, , / (Aa; + E)da! _ A , , . , 2Ba - A& /'___if^___
j(aa;'^ + te + c)i"a^'*^"^'* + ''^ "^

2a J {ax'+bx + e)i'

(See II. B. 13.)

15. f(Aa; + B)(aa?+6a! + c)i£?a;

p^jA, /B A6\ B& Ac A6^K »,, , .,

/Bc_A6c_B6^ A&'W rfa;

\ 2 4a 8a
"•"

16aVi (aa;^ + 69; + c)*
*

(See III. B. 13.)

,g f (Aa; + B)f?a; ^ ^6E 2eA + (2aB - 6A)ie

j (aa;2 + bx + c)i~^'^ "^
(4ac - J^)(aa:» + Sa; + c)*

"
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J {ax' + bx + c)'^i
«a'-^+

{ax' + bx+ ef-i

if w is a positive integer ; where L, M K. are constants to

be determined by I. 11 (a).

J (ax^ + bx + c)i

Mdx= (Pk"-' + qx'^-' + ---- + S)(aa;2 + bx + e)i + f^-^
y (aaf +(aa;^ + fta; + c)5

where the constants P, Q, S, M are determined by I. 11.

For the last integral, see III. B. 13. Otherwise, see IX. A. 3.
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Appendix N.—Section III. Some Special and some

MORE General Cases.

A (4). Since ^=1--^, .". f-_^ = C +^-^.
^ ' x + b z + b' }{x-vhf b x + b

A (8). f_^=C + -^tan-'fx^/^).
^ ' jax'^^-b ^ \ V b/

A (9). f^,^=C + llog^±f'.

A (12). "When n=2, m may be or 1 ; and the formula gives

When n = 3,m may be , or 1 , or 2 ; and the formula gives

with m = 0,jj-j^g= -Iog(l+a;)- g log(a;2-a!+ 1)

4-577tan-^ + C,

and with OT= 1,1 r^-A= - ^log{l+x)+ - log (j;^ - a; + 1)

4-577 tan-2y + C,

and with OT= 2 , [^^= I log (1 +a;3) + C

.

J 1+x^ 3

When ra = 4 , m may be , or 1 , or 2 , or 3 ; and the

formula gives

—

with m= ,

/,

'^^ =J_log*i±^^^ + J_tan-^^ + C:
l+K* 4n/2 x^-xj2 + l 2^2 l-a;2

and with m= 1

,

f^=C-Jtan-l;

and withm = 2,

f^=-Llog-^--f+l+-Ltan-'^4.C;
yi+5c* 4^2 a;2 + a;^/2 + l 2 v/2 l-a;^

and with to = 3
,
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j(l-ax)» 3a2 ^
'

f ^^ - C + A~^
i(a;H-l)^'52^1 V a'+l"

(^—J^^-^-^ = c - /^ii
i(a;-l)V52^ Va;-r

{J'^jL^dx =C+ V(a: + «)(« + 6)

+ (a - &) log { \/a: + a + >/» + &}.

^ <^)-/(P^>=«-;^''-(f)-

B (13). Another form applicable whether a be + or -

:

' with K.=x +
2a

( dx r dK
)(ax^ + bx + cy

J(aX^-|!+cy
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IV. LOGARITHMS AND EXPONENTIALS.

1. je'dx = C + e'(e=base of Neperian Logarithms).

2. [a'"dx =0+ / a".
J nlog,a

Sp. Case : je'^dx = G+-e".

3. / log^dx =C + X logeS! - X .

4. jlog^dx =C + a;(logja!-log6e).

Sp. Case: 6 = 10, ilog^gXdz= G + x{log^f^x- -4:34:29 ).

5. / {log^ydx = C + a:{(logea;)" - nQogfi;)"-' + n(n - l)(logea!)''~''

±n\}.

6. jx'^e'dx = C + e'lx^ - mx'"-'^ + m{m - l)a;"'-''- ±m\).

7. id'^t'dx = is^'^h-'dx. (See III. A. 2.)

For other formulse involving logarithms or exponentials, see

VIII. 7-25 and IX. C.

Definite Integrals loith Numerical (or Particular) Limits.

8. ("e-'^dx =1 /^ where a>0.
Jo 2V a

. Aog i Xdx = e-Vdx = T{n+ 1) . (See X. 1-6.)

J a Jo
9

Appendix 0.

IV. (7). From the equality of the logarithms of the two sides,

a""'«6''= »"'"%" and e"'°«?"=a!".

Therefore

fa"
„nlog a+l

n log^a +

1

and \e"^''^^dx =-
; n+\

Also
I

e-«a;''<ia; = a-'"+'T(w+l).
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v.—HYPBEBOLIC FUNCTIONS.

L,
, sinha; ,, 1

tanha;=—-— : cotha;= ;—
;

cosna; tanha;

secha!=—^^j coseoha;=
"cosha;' sinha;'

gda;= cos"' secha; = sin"' tanha; = tan~i sinha; = 2 tan'Hanh—

,

2'

1

.

/ sinha;.da; = C + cosha;

.

2.
I
ooslia;.tZa! = C + sinhx

.

3. / tanha;.c?a; = C + log^ cosha;

.

4. I dotha;.dx = C + log^ sinha;

.

5. / sechai.cZa; =0 + 2 tan"V = C + gcb

.

6.
I
cosecha;.cZa; = C + log^ ^—-- = C + ] og, tanh—

,

Note.—Every formula in VI. gives rise to a corresponding
formula in hyperbolic functions, and vice versd, by writing ix for

X and using the identities :

—

sin ix = i sinha;

cos ix = cosha;

tan ix = i tanha;

where i=^{- 1).
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VI.—TRIGONOMETRICAL FORMS.

Note.—The substitution oipx + q for x and of p.dx for dx, gives

more general forms of VI., 16, 19-25.

Sp. Case : - a;+ -^ for a; and - dx for dx changes every trigone-

metrical ratio of x into its complementary function.

1. \ sin. {jpx + q)dx=G-— cos(^ + g').

Sp. Case : I sin xdx= C - cos a;

,

2. \cos(px+ q)dx = C +— sin (pa; + g)

.

Sp. Case: I cos axita: = C + sin a;

.

3.
I
tan {px + q)dx = G-— logj cos(^a; + g).

J P

Sp. Case ; I tan xdx = C - log, cos x

.

4. / cot (px + g)dx = C +— logj sin [px + q)

.

J p

Sp. Case : / cot xdx = C + logj sin x

,

5. /sec (,...).. =C.|log.^±5£g±j)

= CH-ilog.tan(^+--f).

6. fcosec (px + q)dx = C + llog, l-cos(y«' + g)

J 2p ° l+cos(^a! + g')

= C + llog,tan^^.
p 2

r X 1
7. jsm\px+ q)dx =G + -—-— am(px + q)coa(px+ q).

J 2 2p

f X 1
8.

j
cos'{px+ q)dx =C +— +— sin(jpa; + 2') cos(^a! + g').
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9. ta.ii\px + q)dx =G-x+— tan{px + q),

0. cot^{px + q)dx =G-x- — cot{px + q).
J p

1. Isec^(j)x + q)dx =G +— tan(j>x+ q).
J p

2. / cosec^Qja; + q)dx = C -— cot (px + q)

.

J p
q fe,m{px + q)dx ^ ,

1 , , v

J C0B^{px + q) p ^
'

, [cos (px + q)dx n 1 / , \

J 8ia'{px + q) p
\-c-

,
1/

Js.
r
= C + — loge tan (px + q)

.

sin (px+ q) cos (px +'q)

6. [sm''xdx, Lo&^xdx, (-^, (-^, (tm''xdx, Icof'xdx.
J J jsin"*' icosV J ' J

For the first two integrals use II. F. or IX. B. 1, 2.

„ „ second pair „ IX. B. 3, 4.

„ „ last pair „ VI. 21, 22,

See also VI. 19.

17.
I
sin (px + q) cos"(j3a;+ q)dx = G- -. —- cos"+i( pa; + q)

.

J (n + V)p

18. I cos (px+ q) sin''(pa;+ q)dx = G + -. ^y- saiP''^\px + q)

.

19. / sin"a; cos^ar^ia; . Four methods.

Method I. (1) if m is an odd positive integer, use X=cosa!

(2) „ n „ „ „ „ X=sina;

(3) „ »H- w „ even negative „ „ X^tana;

and the integrals become rational.

Method II. If m and n are positive integers, use II. F.

Method III. Use IX. B. 5, 6, 7 or 8.

Method IV. If in or n or both are fractional, use Xssina;
or=cosa;, and expand the binomial factor which results.
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20. I sin™!!! cos"a; smqxcosrx dx.

Where m, n, q, r are positive integers, use II. F.

21. jtaD.''xdx.

If n IS even, = C+ — H + tana; + a;.

M- 1 ra-

3

„ „odd =0+ =-- ^+----±-s— ± logecosa;.
n- I n-3 2

22. (coVxdx = C ^ cof-ia; + -i- cof-^a! ± cot a; + »,
J n-1 n—3 -J.

11 n even.

= C - —!^ cof-iw+ -1- cot"-»a! - ± i cot^a;
71-1 n-3

+iog^sina;, ifModd.

23. f f =C+ J ,,cosh-i^^gg^±J if6^>a^
7 a + CDS a; ^(o^ - a^) a + o cos a;CI _i a cos iE + & -f J.O ^ _o+ —77-5

—

jtrCos
1

J
if 62<a2.

;^(a2 - 62) a + & cos x

j a + & cos a; + c sin a;
~

J o + ,»y(62 + c^) cosX

where X=a! - tan-iy. (See VI. 23.)

Sp. Case : (1) when c= 0, it becomes VI. 23.

(2) when 6 = 0, „ „ \ ^r—
^ ' . " ya + csma

25. f^!^ 1
f(acosX-6)'"(a 6cosX)—irfX,

y (a+ 6 cos a;)" (a^ - 6^)" 'J

if a>6, m+l<w, where tan--= / -tan
2 V ffl + 6

= „„ ^,^
, [(6 - a coshX)"(6 coshX - a)"-"'+id:X,

, X /6-a .

if ffl<6, m+l<n, where tanh -«-— . / j^,
•
''^^

Expand in each case by Binomial Theorem, and use II. A.
then VI. 16 or 19, or Note at end of V.*

* See Appendix P.
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Appendix P.

The definition of X here given is the best for ready calculation

of its value ; but it is well to note that

X a-h . X ,
tan— = A / ; • ton—- means also

2 V a + 6 2

sin X = hjo? -

cosX =

a + 6 cos a;

a cos x + b

a + b cos X

tanX=>/^^^' ''''''

a cos x + b

dx

a + b cos X

Definite Integrals with Particular \or NumericdC\ Limits.

26. / &m:'xdx=\ eoa"xdx=-—-. ^- (See X. 1-6.)

i. ^0 2r(| + i)

p/m + 1 \ p/w+l \

„ /'^'2 V 2 / \ 2 /
27. I sin"a;cos"a;(ia;= /^ . ^ , o\

—

'

" "
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Appendix Q.—Some other Special and some more
General Cabbb.

VI. (7) and (8)./x 1
sin.2 {px + q)dx= C + ^- - -^sin 2(px+ q) ,

2 4p/x 1
cos' {pz + q)dx = C + -^ + -r-sin ^{px + q)

.

2 4p

VI. (17) and (18).

I sin (pa + q) cos {px + q)dx= C + — sin' (px+ q)

= C - ;j- cos 2{px + q) .

ip

/"
• / . \ / .7\j r^ COS i(p + r)x + q + k}

j
sm {px + q) cos {rx + k)dx'= C ^''\^.

'—^ '-

cos {(p-r)x + q-k}

fsin (px + q) sin (rx+ k)dx = C - ^^ {(P + r)x + q + k}

J 2{p + r)

sin {{p-r)x+ q-k]
2{p-r)

fcos (px + q) cos (rx + k)dx= C + ^^^ {(P + r)x + g + k}

J 2(p + r)

sin {(p-r)x + q-k}
2(p-r)

j sinpx sin (px + q)dx= C + -^ cos 3 - i sin (2pa) + g)

.

VI. (26) and (27).

/•W2 . r,r/2 /-^

I sinaw[a;=l=l cosa;aic. / sva.xdx = 2.
Jo Jo Jo

j
oosxdx= 0=

j
Gosxdx= I sinxdx.

I siii^xdx =~= r cos^xdx.
Jo 2 J

/^IP . „ , . , _ Mp
g

sin''(px+ q)dx=— =j^ cos'' (px + q)dx

.
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It p = ld and r — md, I and m being integers : that is, if d be
the greatest common factor or divisor of p and r, I and m being

calculable by — = i- : then p .— = l.2v and r . —^ = m . Ti-ir.m r d d

Therefore, since iir = 360°, the addition of —- to a; in any com-
d

posite trigonometrical function of hofh (px + q) and (rx + k) brings

the function recurrently back to the same value. It also does

the same to any similar function of {(p + »')a; + constant} or of

{(p -»•)» + constant}. Therefore the definite integration be-

tween any value Kj and aij +—- of each of the three functions

given above, VI. (17) and (18), namely of sin( ) cos( ),

sin
( ) sin ( ), and cos

( ) cos ( ),
gives zero integral.

Also I sin (px + q) cos (px + q)dx= 0.

If X denote flux of time, then -t=- is the lapse of time, or
d

"period," between successive recurrences of identical values of

any composite trigonometrical function of (px + q) and (rx + k),

corresponding to the " beats " of the composite harmonic function.

The two harmonic functions have the different periods — and
p

1ir
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VII.—INVEESB FUNCTIONS.

[Note.—These can be transformed into mtegra,ls involving the

corresponding direct functions by substitutions like X=sin~'a;
.'.a;=sinX .\dx=cos'KdX, etc.]

N.B.—smh-^x = log,{a: + ^(1 +x^)}.

cosh-'a: = loge{a;± J{x^-l)}; x>l.

tanh"'a; = -;7-loge=

—

- ; x<l.
Z L — X

coth-'!B= -jr-logj?—-; x>\.
Jt X — I

secb-'a;= cosh-'— = log,-^- V(^~"'^); x<l

.

X X

cosech-'a;= sinh-^— = log/ "^ n/(^ + '^')
, ifa;>0

X X

,
1- J(\+x^) ., „= log, ^^ ^, if «< .

X

gA~^z — sech~'cos x= tanh~'sin x = sinh~Han x

= 2 tanh-Han |- = log.tan(^^ "'' y) = "2 ^"^'T^
1 , 1 + sin a;

sina'

1

.

/ sin-'a;<?a; = C + a; sin-'a: ± (1 - x^)i .

2

.

/ cos~'a;£ia; = C + a; cos"'a; + ( 1 - ai^)*

=
1 1-^ - wa.-^x]dx

.

3. I tan~^a;c?a! =C + x tan~ia; - -^log6(l + x^)

.

4. / cot~ia;cZa; = C + a; cot~ia; + -s-loge( 1 + a;^) ,

5. I seo-^xdx =G + x sec-^a; - log.fa; + ^(a;^ - 1)}

= C + a; sec~^a; - cosh~ia;

,
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6. / cosec~i!BcZa! =C + x cosec" ^x + loge{a; + J(x^ - 1) }

= G + x cosec'^a; + cosk-ia;

.

7. / sinhrhidx = C + a; sinh-ia; - 7(1 + a:^) •

8. I cosh~'^xdx =G + x cosh~ia; - J{x^ - 1) .

9.
I

tank" ^xdx =G + x tanh-ia; + -i-log^l - x^)

.

= C +^^ logXl + x) + ^^log.(l - x)
.

10.
I
coth-'aicZa; = C + a; coth-^a; + -llogXa;^ - 1)

= C +^ log/^ + 1) -^-^ log.(a; - 1)

.

11. / sech"'a;cfa; =C + a;sech"^a;-cos"'a;.

12. I cosecli~'a;(^a; = C + a: cosech'^a; + suih~'a;.
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VIII. MIXED FUNCTIONS.

1 fsmxdx -, a? x^ x^
,

n fcosxdx ^ ,
a;^ , a;* a^

,

^- /—^=^+^°s^-2:2!+4:4!-6:6T+--

o [Unxdx_^ 4(4-l)Bi^ 42(42 _i)e^4
^
48(43 _ i)B3a!8

j~^~-^'*'
2:2! "^ 4.4! "^ 6.6!

+ -— .*

, fcotxdx _„ 1 4Eia; 4^638:3 48E3a;S ^
j x X 1.2! 3.4! 5.6!

"'"•

K {s&zxdx 1 , 1 + since { ( . 1.. I-r. W*

Use II. A., II. F., and IX. C. 3 and 4.

6. fgg^-^.=c-l+2{^^-V^%(^^;y
] x X \ 1.2! 3.4!

+ (2°-l)E3a^

5.6! •"" }•

» fe't^a; ~ , a;^ cc^ a:*

^- J-^ = ^ + ^°S'^ + *'+2X! + 0! + 4.4! +
--

8. I x'^ef^dx \n=a, positive integer]

„ ^ ( a;" wa;"'^ »(w 1) ^
I a a^ a'a

w(w-l)(w-2) 2.1+

If n is not a positive integer, use II. D-

9. I -jjfia; [wi=a positive integer]

"^ *
I (m-na?"!"

5+----
(m - l)ar-'- (m - l)(m - 2)ai™-

^(OT-l)(OT-2)----2.a;/ "^(TO-1)!7 » "

yill. 7.'

Otherwise see IX. C. 7.

For values of B^ Bj see note at end of Section VIII.
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10. jx'^+^dx= Ix'^e'^^'^e'dx

Use II. A. and VIII. 18.

Up".
11. j^''sm{po= + q)dx= G + '"'"^''^''^^,^}-,^'^'^+ ^^K

12.
j e*^" ooaipx + q)dx= je'"-^ sm{px+ q + ^ )dx . (SeeVIII. 11.)

13. J3ifcosfxmi.^xdx, -where j> and q are positive integeis.

By II. F. and II. A. reduce to IX. C, 1 and 2.

14. l'E(x)f{siax,coax)dx, [¥() and/ (
)=rational integral

•' functions].

By II. F. and U. A. reduce to IX. C, 1 and 2.

r all
15. I log,(sin mx)dx = C— logj2 - k"(sin 2?wa;+52™ *»»«

+ -^sm6mx + -r^Bin87rKC+ )

if o<mx<-^ ./x I 1

log,(oos mx)dx= C log.2 + ^^{sio. 2'mx - ^sin imx

+ =2 sin 6mx + r-^sin 8tnx

[if--|<m«<-|].

1 7. f
loge(tan mx)dx = C (sin 2mx + j^ sin 6ma!+ -^sin lOmx

72

18. [^"(log^)"*! = [e'-^+^^X-dX

X=logea;.

(See VIII. 8.)

+ =jSinl4wKB+ ----).

N
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19. jx'^J(\ogaX)dx, [F( )=a rational integral function]

Use II. A. and VIH. 8.

Definite Integrals with Particular [or Numericat] lArmts.

20. re-'!>Pdx= T{n+\). (See X.)

21. JVaog«rc?«=(-ir^|^,. (SeeX.)

I
24. r 2??^cZa;=oo .

J.
""

25.
I

log,(sin a!)rfa; = - -2-log,2

.

Note.—Bernoulli's Numbers.

Bi Ba Bj B4 B5 B(j B7 Bj B9 Bio ^to., etc.

1 1 1 1 _B_ B»l 7 8817 4 8867 12 2 277
T ^IF TJ Tff 15T ^TFff t SIO "?»! "4810 •

23. ?E^da;=^ if^>o
a: .^
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IX.—rORMULiE or REDUCTION.

Note.—Formulas of Reduction may be obtained by combinations

of 1. 4, I. 7, and H. A, B, C.

fiB^X'd

IX. A. Algebraical.

rdx where Xsacc" + h

m, n, r being + or -
, whole or fractional indices.

By the use of one of the subjoined formulas, the integral of any
one of the following 9 functions may be reduced to that of any of

the other 8

:

^w+n^r+l
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(vii) jafX'-dx = —
i^ | ai^+'X' - nra j ar+"X'-^dx \

(-rai) = .—-^p- ,/ ,
- r / (w + 1 - M)a;'^iX'-

(wH- 1 +TOr)(m+ 1 +Mr - w) (
^ •'

+ ^af«-"X'-+'- {m+l-n)nr—lx'^-"X'-'dx \

2. X=(aa;'» + &i;» + c)

(i) [x^X'-dx = ^^ { w-^+iX*- + wrc iaTX'-^dx
J m+l+nr I y

-nraix'^+'^X^-'^dx \

- (»w + 1 + mr - m)6 \al^''X''dx
|

- (»» + 1 - 2«)c (x'^-^^X'^dx
J

3. X=aa;2 + fee + c

j-x'^X-idx=^ I
a!"-'X* - (ot - 1)6 jaf-^X-idx

-{m-iyJar-'X-idx i

If wi be a + integer, this reduces to III. B. 14 and 13.

4. X=ax^ + bx + c

/^"^^ = (r-l)(4'ac-6^) |(^^^ +
^)^"'-"

+ 2(2r-3)a[x-'-+i£Za!l

If r be a + integer, this reduces to III. A. 16, 17.

„ „ (+ integer +^) „ „ III. B. 13.
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IX. B. Trigonometrical.

Note.—The following formulae remain true when px + q is

suhstituted for x and pdx for dx. (See II. G.)

Sp. Case : If ^ = - 1, and q—^ radians, in this substitution, we

deduce a new formula in which each trigonometrical ratio is

replaced by its complementary ratio.

N.B.—The following formulae, when n and m are integers, reduce

bo the formulae referred to in the right-hand column.

'xdx1. Isin''xdx= sin"-'a;cosa! + ^ /sin" ':

J n n J

2.
I cos'^xdx =—cos""^*; sin x + / (Ms''~''xdx
J n n J

o f dx - cos X 71-2 [ dx

JsiD"x ~{n-l) sin"-'a! n-lj sin"-**

. f dx _ sin a;
a.

** " ^ f_

jcos"a!
~ (n-1) cos""^a; w-ljc

5. ^,n=js

n-2 f dx

sin™a;cos"aj(^a!.

-"-771, n
1

sin^+'a; cos""'a; + -

m + n

sin*"-!* cos"+'a; + ^,„m+n m+n

n-\
m + n

m-\

-*^^ii, n—'i

-^^-2, re

6. X,
J COI

sm™a;

' cos"a!

1 sin^+'a) w - m - 2-

w-1
'^x TO -

1

^"•" w-1 cos»-'a!

m-n cos""'a! m-riXm-2,n

) VI. 1, or

j III. A. 1.

1 VI. 2, or

/ III. A. 1.

Ivi. 6,orl2.

I VI. 5, or 11.

VI. 1, 2, or

- 17, 18, or

III. A. 1.

VI. 1, 3, 5,

or 16, or,

III. A. 1.
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7. X, dx

Y _ 1 cos"+'!i; m - M - 2Y
Sin" 'a; m - 1

1 cos''"'a; w - 1

.

ciTi'*~"ll« n

Jsi

n — m sm"~'a! w —

m

v

sin"^!!; cos"a;

VI. 1, 2, 4,

or 16, or

III. A. 1.

Y _ 1 1 _
w + to-2y

1

m - 1 sin*""'!*; cos""'* »» — 1
.n-l-^'*'

m + n 2,

.VI. 5, 6,

15.

9. /tan"a;da;= *^°-" ''^

- Aan"-^i»(fo;

.
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/

IX. tORMUL.^ OF REDUCTION, C. 1-11.

IX. C. Mixed Functions.

of
sin mxdx= -— cos mx +m

x^
cosmxdx =^ —sinmxm m

sin mx.dx

mx

IL(x''~h
mj

(x^-H

sin mx m f cos mxi

{n,-l)x''-^'^n~-l} x"-^

cos mxdx

sin mxdx

mxdx
•n-l

sin mxdx

199

TI. 1, or 2,

when TO is a
positive in-

teger. Other
wise,use II. D.

' and II. A.

If » = a posi-

tive integer

J- VIII. lor 2.

Otherwise,

use II. D.

HL A. 2 if

f COS mx _ COS mx m f
sin n

r ^m+l « / 1 IIL A. 2 if

5. \(XogxYx'^dx =^^aQ0xY ^\(\osxf-^^dx U=apo8i-

6. fx^a'"dx =4^ ^{yf'-'ard:
J n log^a w logefly

7 fi!^
-g' 1 fe'dx

ia;™ ~(»w-l)a!*-'"''m-lja;"-i

o fax nj 6*^008" Ww sin a; -fa cos a;)
8. / ^"cos'^xdx = ^ = '-

J n'+ a'

n(n-l) f
'
n^ + a' j'+ - e^'cos^-^xdx

.

\ IV. 2 if m=
} a positive
•* integer.

) VIII. i ifm
f is a whole
' number.

IV. 2if»=
even positive

integer.

VIII. 12if»i
= odd positive

integer.

Q /^ ai n J _ e'"sin"~^:g(a sing - wcos x)
] IV. 2 if M is an even

y.je smxax
n^ + a^ I positive integer.

«(«^ r f VIII. 11 if ^^odd
rt' + a^J J

positive integer.

10 ( ^ d ^{aoosx -{n- 2)sina;} a^ + (n- 2f f e'$x

] cos"* (re - 1)(« - 2) cos"-ia; (w - 1)(« - 2)j oos^V

n r ^ A _ e°'{asing -t- (?» - 2)cosig} a^ -f (w - 2)^ /" e^tgg

jsiH^ ~ (m - l)(m - 2)sin'-'«! ^ {n- l)(w- 2)/sin"-V
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X.—GAMMA FUNCTIONS.

Properties of thb Gamua Function.

1. Definition: r(n)=|^ e-'x''-^dx=

j

^
(log,^)"'^'^

where n>o.

2. r(M+l) = TOr(»t).

3. If re is a positive integer r(n) = (w - 1) ! and r(l) = 1.

4. r(re)r(l-«)=^
smWTT

it n>o and<l.

5. T{n)- Lim l^i m"
/i. = 00 n{n +1) (m + /*)

where /u is a positive integer.

N.B.—Legendre, in his TraiU des Fonctions Mliptiques, Vol.

II., gives an extended table of 1000 entries from «= 1 to »= 2, to

12 decimal places.

6. Table of Values of 1 + logigr(n).

76
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XI. DIFFERENTIAL EQUATIONS.

XI. A. First Order, First Degree.

1. X' + toX = 0, X = Ce-'», or a;= - — logS-.m ° G

2. X' +f{x) = , X= C - lf{x)dx

.

3. X' + X/(a;) = , X = C eay { - h(x)dx) .

Sp. Case : f{x) = mx^ ; log ^ = ^Ij^"*'

.

4. X' + X/(a;) = <^(a;)

X = exp{ — \f{x)dx}\G + j<l>(x)exp{ jf{x)dx}dx] .

Sp. Case : f{x) = Jc, .:X' + KK = ^{x);

X = e-'"{G+ U{x)^dx},

5. X' = 'l>{x)f{X) , j-^= j<l>{x)dx .

Sp.Ca^e: 4>{x) = l, .•.X'=/(X), «=-j^y

6. /(»,X)X' + <^(a;,X) = . If the condition M, =^ is fulfilled,

then

j,t>{x,X)dx + j[f{x,X) - ^^^^dx'^X = C

or jf{x,X)dX + [[^(aX) - J^^M)axJrfx= C

the integrations being partial.

Note.—If the equation as given does not fulfil the above con-

dition, it may do so after being multiplied throughout by a function

of a: or X or both, called the Integrating Factor. (See Boole,

chapters IV., V.) E.g. {x^X+X + l) + X'{x + x^).

Integrating Factor, 1/(1 + x^). Solution : xX + tan"^a! = C

.

7. Xy(a;,X) + <^(a:,X) = where /(a;,X) + <^(a;,X) is homogeneous

in x,X. Substitute X^a;^ and reduce to XI. A. 5.
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8. (ax + bX + c)X' + {/x +gX + h) = 0.

Assume ax + bX + e=z
; fx+ gX + A=Z , hence

- Z'z +/z - jfZ = . (See XI. A. 7 or 3.)

Mee. when a:b =f:g ,
put S=ox + bX , hence

(J + <=){S -a) +gM + bh= 0. (See XI. A. 6 Sp. Case.)

9. X' + X/(x) = X''.^(a;). Substitute 4^=Xi-"
. Then

S + (1 - n)Mf{x) = (1 - n)4,ix) . (See XI. A. 4.)

10. If a;X' = (AX + B)(aX + 6);

then Ca;"= ^=—=- , where a = Ab~ aB.
aX + 6

If xX' = aX^ + bX + c;

then ^'^''=
2aX + b + 1 '

'^^^^^ "= JW^^Iae,

11. If a;X' = (AX + B)(aa) + 6);

thenAX + B= a;*».e*"*'+'".
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IX. B. First Order, Second or Higher Degree.

1. /(a;,X,X') = 0. If possible, solve for X'. Each solution X'
= <^(a;,X) , solved by XI. A. if possible, gives part of the

general solution.

2. /(X,X') = . Use XI. B. 1 if possible : otherwise solve for

X if possible. Each solution X = <i6(X') gives x = j^^^dX'

+ C . Then eliminate X' between the last two equations.

3. /(a;,X') = 0. Use XI. B. 1 if possible: otherwise solve for

X if possible. Each solution x = <^(X') gives X = / X.'<t>'(S.')dX'

+ C . Then eliminate X' between the last two equations.

4. X= a;X'+/(X'). (Clairault's Equation) X=:ex+f{c).

See §202, p. 123.
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XI. C. Second Order.

1. X" + ??i2X = 0, X =A cos ??ia; + B sin TTia:

» = cos (mx + K).

2. X"-m2X = 0, X = Ae"" + Be-"«.

3. X" + a X' + 6X = 0. Two forms :—

X=e—/^

I
Aea;p(|- J(a^ - 46)) + Beay( - 1. ^(a^ - 46)) i

when a2>46

--
{ Acos(|vIF3H-^).Bsin(|v463^.) } )

^^

= Ce-«/^cos||-7(46-a2) +Ki
j

<**•

4. X" =/(a;), X =
jj

f{x)dxdx + Aa; + B

.

6. X" + aX' + 6X =/(«).

By XI. C. 3, find M by solvingX + a3^' + b^ = 0.

„ XL A. 4, „ S „ „ 3^S' + {2j' + aJ}B=/(a!),

Then X = 4!f fHt^ic . See § 2 1 6, page 132.

7. X" + X'/(a;) + XF(a;) = .^(a;).

Find M if possible from J" + M'f{x) + JF(a;) = 0.

„ B by XI. A. from n'M + 'B{2j + Mf{x)} = <l>{x).

Then X= ^j'adx. See § 2 1 4, page 1 30.

/72Y /-/SY

8. —5 = c^—s . where X is a function of x and y :

General integral solution :

—

where the forms of the functions /( ) and <^( ) are deter-

mined by limiting conditions.
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XI. D. Order higher than Second.

1. f(x, X'"-", XW) = 0. Put J = X'"-", and equation becomes
/{x, ^, J') = 0. (See XI. A, or B.)

2. f(x, Xf-^ X"-^', X<"1,) = 0. Put J = X"-^' and equation
becomes f{x, J, J', J") = 0. (See XI. C.)

3. XI") =/(»).

X= / f{x)da!"+ C^x"-^ + Cja;"-^ + - - - - + C„

.

4. X"*' + aiX<"-« + agX'"-") +- - -+ a„. ^X' + a„X =

where wij, m^, m„ are the roots of the auxiliary equation
OT"+ ai?w"-i + a„??i"-2 + + a„_jm + a„ = 0.

Note 1.—If wij =j? + q J -I and wij =j? -q ^ -I are a pair of
imaginary roots, the terms Gj^^"+ C^e^^ are equivalent to the
real form ^' (A cos ja; + B sin g's;).

Note 2.—If there be r equal roots m^, m2 m„ each=/i, the

corresponding terms in the value of X are (Cj + G.^ + G^a? H

+ G'iif~^)ei^. And if there are r pairs of imaginary roots each

—P ± ?>/ ~ 1) *li6 terms are

e*""!AjCOS qx + BjSin ya; + ^(Ajcos qx + Bjsin qx) H

+ a!''~^(A^cos qx+ B,sin ga;)}

5. X"" + aiXi-" + a2X'"-=" +— - + a„X = 6„ + Mh- 622;^+— - + h^.

Differentiate both sides r + 1 times and solve the resulting

equation by XI. D. 4. This solution is too general, having
n + r+\ arbitrary constants : but by substituting in the
equation and using I. 11, we get r + 1 relations between the
constants.

Otherwise : see XI. D. 6.
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6. X"" + aiX'"-ii + a^Xi"-^' + - - - + a„X =f{x.)

Let X = F(a;) be tte solution on the supposition that

/(a;) = 0. (SeeXI. D. 4.)

Then X = F(a;) + 2 A^p{m^)
j
exp{ - m^f{x)}dx,

where Ai Aj are such as to make the equation

Ai A2 A„ _ 1

m-7?ii ' TO-9W.2
'

' »i-wi„ m" + fflim""' + asm""'' H i-a„

identically true. (See II. E.)

Another method : By variation of Parameters j see Forsyth,

§75.
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XI. E. Partial Differential Equations.

1. ! = «'§. y = Gexp{a.x + o?aH)

where C and a are arbitrary constants,

or 2/ = {A cos aa; + B sin ax}exp{ - a?aH),

A and B being arbitrary constants.

Oenerdl Solution : y = sum of any number of solutions like

the above.

E.g. y=
I

F{a.)exp{ax + o.^aH)da, where F is an arbitrary

function.

where F and / denote arbitrary functions.

dt'' drdi ox^ dt ox

y = Ce^+^' where C, •*, j8 are arbitrary ; but a, j3 subject to

the condition

ap,'^ + la.j3 + ca.^+f^ + ga+h = 0.

Oeneral Solution : y = the sum of any number of such
particular solutions.

4- "^ + *g| + '' = 0, {ct + ay) = ^{cx + hy)

where <^=an arbitrary function.

PWNTEP BY SBIIL AND CO., LTD., EPINBHEGH.
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Fourth Edition, Revised, with Numerous Diagrams, Examples, and

Tables, and a Chapter on Foundations. In Large %vo. Cloth, its.

THE DESIGN OF STRUCTURES:
A Practical Treatise on the Building of Bridges, Roofs, &e.

By S. ANGLIN, C.E.,
Master of Engineering, Royal University of Ireland, late Whitworth Scholar, &c.

"We can unhesitatingly rectimmend this work not only to the Student, as the bkst

Tbxt-Boojc on the subject, but also to the professional engineer as an exceedingly

VALUABLE boolc of reference."

—

Mechanical World.

In Large Crown 8vo. Handsome Cloth. With 201 Illustrations. 6s. net.

AN INTRODUCTION TO
THCS I^SSIOM OF BSIAIVIS,

GIRDERS, AND COLUMNS
IN MACHINES AND STRUCTURES.

With Examples in Graphic Statics.

By WILLIAM H. ATHERTON, M.Sc, M.I.Mech.E.

"A very useful source of information. ... A work which we commend very

highly."—Wat»r«.

Third Edition, Thoroughly Revised. Royal iroo. With numerous
Illustrations and 13 Litho^aphic Plates. Handsome Cloth. Price 30J.

A PRACTICAL TREATISE ON

BRIDGE-CONSTRUCTION:
Being a Text-Book on the Construction of Bridges in Iron and Steel.

FOR THE USE OF STUDENTS, DRAUGHTSMEN, AND ENGINEERS.

By T. CLAXTON FIDLER, M.Inst. C.E..
Prof, of Engineering, University College^ Dundee

"The new edition of Mr, Fidler's work will again occupy the same conspicuous
POSITION among professional text-hooks and treatises as has been accorded to its pre-
decessors. Sound, simple, and full."—T'Af Engineer.

Jn Medium Svo. Fp, i-xv -t- 248, fully Illustrated* Price \os. 6d. net.

CONSTRnCTIONAL STEELWORK

:

Being Notes on the Practical Aspect and the Principles of Design, together
with an Account of the Present Methods and Tools of Manufacture.

By a. W. FARNSWORTH,
Associate Member of the Institute of Mechanical Engineers.

"A worthy volume, which will be foimd of much assistance. . A book of
particular value."

—

Practical Engineer.
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In Large 8vo. Handsome Cloth, Gilt, Uniform with Stability of Shipt
and Steel Ships (p. 38). With 34 Folding Plates and 468

Illustrations in the Text, 30s. net.

The Principles and Practice of

DOCK ENGINEERING.
By BRYSSON CUNNINGHAM.

GENERAL CONTENTS.
Historical and Discursive.—Dock Design.— Constructive Appliances.

—

Materials.—Dock and Quay Walls.—Entrance Passages and Locks.

—

Jetties, Wharves, and Piers.—Dock Gates and Caissons.^Transit Sheds
and Warehouses. — Dock Bridges. — Graving and Repairing Docks.

—

Working Equipment of Docks. —Index.
""We have never seen a more profusely-illustrated treatise. It is a moat important

standard work, and should be in the hands of all dock and harbour engineers."

—

Steajnehip.

"Will be of the greatest service to the expert as a book of reference."—.Engineer.

In Large 8vo. Cloth. With Foldir)g Plates and Numerous Illustrations.

A COMPANION VOLUME TO "DOCK ENGINEERING."

THE PRINCIPLES AND PRACTICE OP

HARBOUR ENGINEERING.
By BRYSSON CUNNINGHAM.

Contents. — Introductory. — Harbour Design.— Surveying, Marine and
Submarine.—Piling.—Stone, Natural and Artiticial.—Breakwater Design.—
Breakwater Construction. — Pierheads, Quays, and Landing Stages. —
Entrance Channels.—Channel Demarcation. —Index.

In Large Crown 8vo. Handsome Cloth. 4s. 6d. net.

THE THERMO-DYNAMIC PRINCIPLES OF
ENGINE DESIGN.

By LIONEL M. HO BBS,
EnBineer-Lientenant, E.N. ; Instructor in Applied Meohanios and Marine Engine

Desisn at the Eoyal Naval College, Greenwich.

Contents. — Laws and Principles of Thermo-Dynamics. — Hot-Air

Engines —Gas and Oil Engines.—Refrigerating Machines.—Transmission

of Power by Compressed Air.—The Steam Engjne.—Unresisted Expansion

and Flo-w through Orifices.—Flow of Gases along Pipes.—Steam Injectors

and Ejectors.—Steam Turbines. —AprENDiOBS.—Index.

"Serves its purpose admirably . . should proye of invaluable service .
well

up-to-date."—.Sftyj^Jlfir World.
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In Handsome Cloth. With 252 Illustrations. 15s. net.

THE THEORY OF THE STEAM TURBINE.
A Treatise on the Principles of Constpuetlon of the Steam Turbine,

with Historical Notes on its Development.

By ALEXANDER JUDE.
Contents—Fundamental.—Historical Notes on Turbines.—The Velocity of Steam.—

Types of Steam Turbines.—Practical Turbines.—The Efficiency of Turbines, Type I.

—

Trajectory of the Steam.—Efficiency of Turbines, Types II., III. and IV.—Turbine Vanes.—
Disc and Vane Friction in Turbines.—Specific Heat of Superheated Steam.—Strength
of Rotating Discs.— Governing Steam Turbines.—Steam Consumption of Turbines.—The
Whirling ofSliafts.-Speed of Turbines.—Index.

"One of the latest text-books . . . also one of the_ best , . . there is absolutely

no padding."

—

Sir IVitliam White in the Titnes Engineering Supplement.

In Large Crown 8vo. Handsome Cloth. With 131 Illustrations. 6s. net.

LECTURES ON THE MARINE STEAM TURBINE.
By Prof. J. HARVARD BILES, M.Inst.N.A.,

Professor of Naval Architecture in the University of Glasgow.

"This is the best popular work on ,the marine steam turbine which has yet appeared."—

Works by BRYAN DONKIN, M.Inst.C.E., M.InstMeeh.E., &e.

Fourth Edition, Revised and Enlarged. With additional Illustrations.

Large 8vo, Handsome Cloth. 255. net.

A TEXT-BOOK ON
GAS, OIL, AND AIR ENGINES.

By BRYAN DONKIN, M.Inst.C.E., M.Inst.Mech.E.
Contents.—Part I.—GaS Engines : General Description of Action and Parts.

—

Heat Cycles and Classification of Gas Engines.—History of the Gas Engine.—The
Atkinson, <>iffin, and Stockport Engines.—The Otto Gas Engine.—Modem British Gas
Engines.—Modem French Gas Engines.—German Gas Engines.—Gas Production for

Motive Power.—Utilisation of Blast-furnace and Coke-oven Gases for Power.—The Theory
of the Gas Engine.—Chemical Composition of Gas in an Engine Cylinder.—Utilisation oi

Heat in a Gas Engine,—Explosion and Combustion in a Gas Engine.

—

Part II.

—

Petroleum Engines : The Discovery, Utilisation, and Properties of Oil.—Method of

Treating Oil.—Carburators.—Early Oil Engines.—Practical Application of Gas and Oil

Engines.—Part III.—AiP Engines,—Appendicbs.-Index.
*'The best book now published on Gas, Oil, and Air Engines."

—

Engineer.

In Quarto, Handsome Cloth. With Numerous Plates. 255.

THE HEAT EFFICIENCY OF STEAM BOILERS
(LAND, MARINE, AND LOCOMOTIVE).

By BRYAN DONKIN, M.Inst.C.E.
General Contents.—Classification of Different Types of Boilers.—425 Experiments on

English and Foreign Boilers with their Heat Efficiencies shown in Fifty Tables.—Fire
Grates of Various Types.—Mechanical Stokers.—Combustion of Fuel in Boilers.

—
^Trans-

mission of Heat through Boiler Plates, and their Temperature.—Feed Water Heaters,
Superheaters, Feed Pumps, &c.—Smoke and its Prevention.—Instruments used in Testing
Boilers.—Marine and Locomotive Boilers.—Fuel Testing Stations.—Discussion of the Trials
and Conclusions.—On the Choice of a Boiler, and Testing of Land, Marine, and Locomotive
Boilers.—Appendices.—Bibliography.—Index.

" Probably the uost exbadsiitk retu-nU that has SYer been collected. A pbaotioai
Boos by a thoroughly practical man."

—

Iron and Goal Trades Review.
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Fourth Edition, Revised. Pooket-Size, Leather, 12s. 6d.

BOILERS, MARINE AND LAND:
THEIR CONSTRUCTION AND STRENGTH.

A Handbook of Rules, Fobmul-b, Tables, io., bblative to Matebial,
SOANTLINQS, AND PeeSSUBES, SaFETT ValVBS, SpBINOS,'

Fittings and Mountings, &o.

FOR THE USE OF ENGINEERS, SURVEYORS, BOILER-MAKERS,
AND STEAM USERS.

By T. W. TRAILL, M. Inst. 0. E., r.E.R.N.,
Late Engineer Burveyor-in-Chief to the Board of Trade.

"Contains an Enormoub Quantity" op Information arrranged in a very convenient form. . .

A MOST USBFUK voniMB ; . . supplying information to be had nowhere else."—Tfte Engvruer.

Fifth Edition. Large Crown 8vo. With numerous
Illustrations. 6s. net.

ENGINE-ROOM PRACTICE

:

A Handbook fop Engineers and Offieeps in the Royal Navy and Mepcantile
Marine, including the Management of the Main and Auxiliary

Engines on Board Ship.

By JOHN G. LIVEESIDGE, E.N., A.M.LC.E.
Confen£«.—General Description of Marine Machinery.—The Conditions of Service aua

Duties of Engineers of the Royal Navy.—Entry and Conditions of Service of Engineers of

the Leading S.S. Companies.—Baising tite^um —Duties of a Steaming Watch on Engines
and Boilers.—Shutting off Steam.—Harbour Duties and Watches.-Adjustments and
Repairs of Engines.—Preservation and Bepairs of "Tank" Boilers.—The Bull and its

' Fittings.—Oleaning and Painting Machinery,—Reciprocating Pumps, Feed Heaters, and
Automatic Feed -Water Regulators. — Evaporators. — Steam Boats. — Electric Light
Machinery.—Hydraulic Machinery.—Air-Compressing Pumpa.—Refrigerating Machines,
—Machinery of Destroyers.—The Management of Wa,ter-Tube Boilera.—Regulations for
iPlnti-y of Assistant Engineers, R.N.—Questions given in Examinations for Promotion of
Ifingineers, R.N.—Regulations respecting Board of Trade Examinations for Entfineers. &c

"This VERY USEFUL BOOK. , . . ILLUSTRATIONS are of GREAT IMPORTANCE ma WOrk
of this kind, and it is satisfactory to find that special attention has been given in this
respect."—.ffjiffineer*' Gazette.

Fifth Edition, Thoroughly Revised and Greatly Enlarged.
With Numerous Illustrations. Price 10s. 6d.

VALVES AND VALVE -GEARING s

A Practical Text-boohforthe use of Engineers, Drauglitsmen, and Students.

By CHARLES HURST, Practical Dkauqhtsman.
Part I.—Steam Engine Valves. I PABT III.—Air Compressor Valves and
Part H.—Gas Engine Valves and Gearing.

Gears.
I

Part IV.—Pump Valves.
"Ma. Httbbt'b valves and valvb-qbakikq will prove a very valuable aid, and tend to the

production of Engines of BcrENTiFic DE8J0N and SCOHOAIICALWOBKINO. . . . Will be largely

sought after by Students and Designers."

—

Marine SnginKr.
" As a practical treatise on the subject, the book stands without a rival. —Mechanical

World,

Hints on Steam Engine Desig^n and Construction. By Ceables
HuEST, "Author of Valves and Valve Gearing." Second Edition,

Revised. In Paper Boards, 8vo., Cloth Back. Illustrated. Price

Is. 6d. net.
OOHTKHTS.—I. Steam Pipes.—II. Valves.—III. Cylinders.—IV. Air Pumps and Con-

densers.—V. Motion Work.—VI. Crank Shafts and Pedestals.—VIL Valve Gear.—VIII.
Lubrication.—IX. Miscellaneous Details —Index.

" A handy volume which every practical young engineer should possess."

—

The Model
Engineer.
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Second Edition, Revised. With numerous Plates reduced trom

Working Drawings and 280 Illustrations in the Text. 21b.

A MANUAL OF
LOCOMOTIVE ENGINEERING:

A PFactieal Text-Book for the Use of Engine Builders,

Designers and Draughtsmen, Railway
Engineers, and Students.

By WILLIAM FRANK PETTIGREW, M.Inst.C.E.

With a Section on American and Continental Engines.

By albert F. RAVENSHEAR, B.Sc,
Of HU Majesty's Patent Offloo.

Confenis. — Historical Introdnction, 1763-1863. — Modem LooomotlTes : Simple.—
Modern Locomotives: Compound. Primary Consideration in Locomotive Design.—
Cylinders, Steam OliestB, and StuiBng Boxes.—Pistons, Piston Bods, Orosstaeads, and
suae Bars.—Oonneeting and Conpllng Rods.—Wneels and Axles, Axle Boxfes, Horubloeks,
aad Bearing Springs.—Balancing.—Valve Gear.—Slide Valves and Valve Gear Details,—

iTraming, Bogies and Axle Trneks, Kadial Axle Boxes.—Boilers.—Smokebox. Blast Pipe,

Firebox Fittings.—Boiler Mountings.— Tenders.- Hallway Brakes— Lubrication.—Oon-
Bumption of Fael, Evaporation and £ngine i!.ffloiency.—American Locomotives.—Con-
tinental Locomotives.—Repairs, Running, Inspection, and Kenewaie.—Three Appendices.
—Index.

"The work contains aix that can be learnt from a book upon such a subject. It

will at once rank as the standabd work upon this important subject."—i2a<iw«y Magazitu,

In Large 8vo. Fully Illustrated. 8s. 6d. net.

LOCOMOTIVE COMPOUNDING AND SUPERHEATING.
By J. F. GAIRNS.

COHTENTB.—Introductory.—Compounding and Superheating for Locomotives.-

A

Classification of Compound Systems for Locomotives.—The History and Development of

the Compound Locomotive.— Two-Cylinder Non-Automatic Systems. -Two-Cylinder
Automatic Systems.-Other Two-Cylinder . Systems.—Three-Cylinder Systems.—Four-
Cylinder Tandem Systems.—Four-Cylinder Two-Urank Systems (other than Tandem).—
Four-Cylinder Balanced Systems.—Four-Cylinder Divided and Balanced Systems.-
Articulated Compound Engines.—Triple-Expansion Locomotives.-Compound Rack
Locomotives.—Concluding Remarks Concerning Compound Locomotives.—The Use of

Superheated Steam for Locomotives.-Index.
"A welcome addition to the library ot the railway engineer."—S»sri>wer«nsf Times.

In Large Svo. Handsome Cloth. With Plates and llluatrations. 16a.LIGHT RAILIHTAYS
AT HOME AND ABROAD.

By WILLIAM HENRY OOLE, M.Inst.O.E.,
Iiate Deputy-Manager, North-Westem Railway, India.

C(yni>ent8.—Discussion of the Term "Light Railways."—English Bailways,
Bates, and Farmers.— Light Railways in Belgium, France, Italy, otaer
European Countries, America and the Colonies, India, Ireland.—Road TrauB-
port as an alternative.—The Light Railways Act, 1896.—The Question of
Gauge.—Construction and Working.—Locomotives and BoUii^-Stock.—Light
Railways in England, Scotland, and Wales.—Appendices and Index,

" Will remain, for some time yet a Standabd Work In everything relating to Light
RallwayB."—An^tneer.

" The whole subject is exhaubtivelt and praotioallt considered. The work can be
cordially recommended as indispensable to those whose duty it is to become u^ualnted
wiib one of the prime necessities of the immediate future."

—

Railtnay OfficAal Gazette.
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In Crown 8vo. Handsome Cloth. Fully Illustrated.

PRACTICAL CALCULATIONS FOR ENGINEERS.
By CHARLES E. LAEARD,

A.M.Inat.C.B., M.I.Meoh.B., Wh.Exh.,
Head of the Mechanical Engineering Department at the Northampton Institute, London, E.C.

•And H. a. GOLDING, A.M.I.Mech.B.

Contents.—Section I.—Contracted Methods of Calculation.—Technical Mensura-
tion.—Practical Calculation by Logarithms.—The Slide Rule and its Applications.

—

Squared Paper and its Uses, Section II.—Pulleys and Wheels in Train.—Speed JR-atios

and Practical Examples.—Principle of Moments Applied to Practical Problems.—Work
and Power.—Energy and Speed Fluctuations.—Transmission of Work through Machines.
—•Friction and Efficiency,—Transmission of Power.-Shafting.—Motion on a Circle.

—

Momentum, Acceleration, and Force Action. Section III.—Temperature Scales.—Units
of Heat.—Specific Heat.—Heat and Work.—Heat Value of Fuels.-Heat Losses in Engine
and Boiler Plant.—Properties of Steam.—Moisture and Dryness Fraction.—Steam and
Fuel Calculations.—Boiler Efficiency.—Size of Boiler.—Engine Calculations.—Power,
Indicated and Brake.—Calculations for Dimensions.—Steam Consumption and Willans
Law.—Efficiencies, Comparative Costs of Power Production.—Commercial Efficiency.

Section IV.—The Commercial side of Engineering.—Calculation of Weights.—Division
of Costs, Material and Labour, Shop Charges and Establishment Charges.—Estimates.

—

Profit.—Use of Squared Paper in the Estimating Depai-tment and to the General
Management.

Sixth Edition. Folio, strongly half-bound, 21s.

Computed to Four Places of Decimals fop every Minute of Angle
up to 100 of Distance.

For the Use of Surveyors and Engineers.

By RICHARD LLOYD GURDEN,
Authorised Surveyor for the Governments of New South Wales ano Victoria.

*^* Published with the Concurrence of the Surveyors- General for New South

WeUes and Victoria.

"Those who have experience in exact Subvky-work will best know how to appreciate

the enormous amount of labour represented by this valuable booK. The computations

enable the user to ascertain the sines and cosines for a distance of twelve miles to within

half an inch, and this by reference to but One Table, in place ot the usual Fifteen

minute computations required. This alone is evidence of the assistance wliich the Tables

ensure to every user, and as every Surveyor in active practice has felt the want of such

a<:sistance few knowing of their publication will remain without them."
— Engineer

Strongly Bound in Super Royal 8vo. Cloth Boards. 7s. 6d. net.

Fop Calculating Wages on the Bonus or Ppemium Systems.

For Engineering, Technical and Allied Trades.

By henry a. GOLDING, A.M.Inst.M.E.,
Technical Assistant to Messrs. Bryan Donkin and Clench, Ltd., and Assistant Lecturer

in Mechanical Engineering at the Northampton Institute, London, E.C.

"Cannot fail to prove practically serviceable to those for whom they have been

designed."—Scotsman.
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Second Edition. Large 8vo, Handsome Cloth. With
Illustrations, Tables, &c. 21s. net.

Lubrication & Lubricants:
A Treatise on the Theory and Practice of Lubrication, and on the

Nature, Properties, and Testing of Lubricants.

BY AND
LEONARD ABOHBUTT, F.LO., F.O.S., B. M. DEELEY, M.I.Me(;h.E., F.G.S.

Chemist to the Mid. By. Co. Chief Loco. Super., Mid. By. Co.

CONTBNTS.—L rriotion of Solids.—IL Liquid Friction or.Visoosity, and Plastic

Friction.—III. Superficial Tension.—IV. The Theory of Lubrication.-V. Lubricants,

their Sources, Preparation, and Properties.-VI. Physical Properties and Methods of

Examination of Lubricants.—VII. Chemical Properties and Methods of Examination
of Lubricants.—VIII. The Systematic Testing of Lubricants by Physical and Chemical
Methods.—IX. The Mechanical Testing of Lubricants.—X. The Design and Lubrication
of Bearings.—XI. The Lubrication of machinery.

—

Index.
"Contains practically ALL THAT IS KNOWN on the subject. Deserves the careful

attention of all Engineers."—Jtailwnt/ OffioiMl Oazette.

FotTRTH Edition. VeryfuMy Illustrated. Cloth, is. 6d.

STEAM - BOI LERS:
THEIB DEFECTS, MAKAOEMENT, AND OONSTBUOTION,

By R D. MTJNRO,
ChW Engineer of the Scottish Boiler Insurance cmd Engine Inspection Compcmy ,

*' A valuable companion for workmen and engineers engaged about Steam Boilers, ought
to be carefully studied, and always at hand."—Coli. Guardian.

By the same Author.

KITCHEN BOILER EXPLOSIONS: Why
they Occur, and How to Prevent their Occurrence. A Practical Handbook
based on Actual Experiment. With Diagram and Coloured Plate. 3s.

In Crown ivo. Cloth. Fully Illustrated, ^s. net.

EMERY GRINDrNG MACHINERY.
A Text-Book of Workshop Practice in General Tool Grinding, and the

Design, Construction, and Application of the Machines Employed.

By R. B. HODGSON, A.M.Inst.Mech.E.
*

' Eminently practical . . . cannot fail to attract the notice of the users of this class of
machinery, and to meet with careful perusal,"

—

Chan. TradeJournal.

Fifth Edition, In Two Parts, Published Separately,

A TEXT-BOOK OF

Engineering Drawing and Design.
By SIDNEY H. WELLS, Wh.Sc, A.M.I.C.E., A.M.I.Mech.E.
Vol. I.

—

Practical Geometry, Plane, and Solid. 48. 6d.

Vol. II.

—

Machine and Engine Drawing and Design. 4p. 6d.

With many Illustrations, specially prepared fnr the Work, cmd numerout
Examples, for the Use of Students in Technical Schools and Colleges.

" A CAPITAL TEXOHBOOK, arranged on an bxcbllrht stsieu, calculated to give an Intelligent
grasp of the snbject, and not the mere faculty of mechanical copying. . . . iSx. Wells shows
now to make couplets woseihg-dbawingb, oiscusBing Allly each step in the design."—JFIeetHeal
Review ^
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In Three Parts. Crown 8vo, Handsome Cloth. Very Fully Illustrated

MOTOR-GAR MECHANISM AND MANAGEMENT.
By W. POYNTER ADAMS, M.Inst.E.E.

PART I.—THE PETROL CAR. 53. net.
Second Edition. With important new Apijendix, illustrating and defining parts

of actual cars in use.

Contents.—Section I.—The Mechanism of the Petrol Car.—
The Engine.—The Engine Accessories. —Electrical Ignition and Accessories.
—Multiple Cylinder Engines.—The Petrol.—The Chassis and Driving Gear.
—Section II.—The Management of the Petrol Car.—The Engine.—
The Engine Accessories.—Electrical Ignition.—The Chassis and Driving
Gear. —General Management.—Appendix. —Glossary. —Index.

"Should be carefully studied by those who have anything to do with motors."—-4k/o-
mobile arid Carnage Builder^ Journal.* PART II. The Electrical Car, and PART III. The Steam Cap will be

issued shortly.

la Large 8vo. Handsome Cloth. Very Fully Illustrated. 18s. net.

A MANUAL OF
PETROL MOTORS AND MOTOR-CARS.

Comprising the Designing, Construction, and Worliing of Petrol Motors.

By F. STRICKLAND.
Gbhekal Contents.—Pakt I. : Engines.—Historical.—Power Required.-General

Arrangement of Engines.—Ignltiou.—Carburettors.— Cylinders, Pistons, Valves, (fee-
Crank Shafts, Crank Chambers, Cams, Bunners, Guides, <So.—Pumps.- Flywheels.—
Pipe Arrangements.—Silencers.—Engine Control, Balancing.—Motor Cycle Engines.—
Marine Motors.—Two-Cyole Motors.—Paraffin Carburettors.— Gas Producers. Pakt
II.; Caks.—General Arrangements, —Clutches.— Transmission.— Differential Gears.—
Universal Joints.—Axles.— Springs. — Badlus Rods. — Brakes. — Wheels.— rrames. —
Steering Gear. -Radiator. — Steps, Mudguards, Bonnets, <feo.— Lubrication. — Ball
Bearings.—Bodies.—Factors of Safety.—Calculations of Stresses.-Special Change Speed
Gears.—Special Cars.—Commercial Vehicles.—Racing Cars Index.

"Thoroughly practical and acientiflc. . . . We have pleasure in recommending it to all—Mechcmicai Engineer.

In Large Svo. Cloth. Fully lUuatrated. 10s. 6d. net.

THE PROBLEM OF FLIGHT.
By HERBERT CHATLEY, B.Sc.(Eng.), London,

Lecturer in Applied, Mechanics, Portsmouth Technical Institute.

Contents.—The Problem of Flight— The Helix.— The Aeroplane.— The Aviplane.-
Dirigible Baloons.-Form and Fittings of the Airship.-Appendices (The Possibility of
Flight, Weighty A Flexible Wing, Iheory of Balance^ Bibliography).—Indbs.

In Crown Svo, Handsome Cloth. With 105 Illustrations.

MECHANICAL ENGINEERINGFOR :bsgx:n^n^£:ics.
By R. S. M<^LAREN.

Contents.—Materials.—Bolts and Nuts, Studs, Set Screws.—Boilers.—Steam Raising
Accessories.—Steam Pipes and Valves.—The Steam Engine.—Power Transmission.

—

Condensing Plant.—The Steam Turbine.—Electricity.—Hydraulic Machinery.—Gas and
Oil Engines.—Strength of Beams, and Useful Information.-Index.

LONDON: CHARLES GRIFFIN & CO.. IIMITED, EXETER STREET. STRAN&
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WOBKS BY
ANDREW JAMIESON, M.Inst.C.E., M.I.E.E., F.R.S.E.,

Formerly Professor ofElectrical Engineering^ The Glas. and JV. of Scot, Tech. Colt.

PROFESSOR JAMIESON'S ADVANCED TEXT-BOOKS.
In Large Crtmm ^vo. Fully Blustrattd,

STEAM AND STEAM-ENGINES, INCLUDING TURBINES
AND BOILERS. For the Use of Engineers and for Students preparing

for Examinations With 800 pp., over 460 Illustrations, II Plates, many
B. of E., C. and G.

,
Questions and Answers, and all Inst. C.E. Exams.

on. Theory of Heat Engines. Fjfteenth Edition, Revised. los. 6d.
" The Bkst Book yet published for the use of Students."~^«^w*r.

APPLIED MECHANICS & MECHANICAL ENGINEERING.
Including All the Inst. C.E. Exams, in (l) Applied Mechanics;
(2) Strength and Elasticity of Materials ; (3a) Theory of Structures ;

(ii) Theory of Machines ; Hydraulics. Also B. of E.; C. and G. Questions.
Vol. 1.—Comprising 568 pages, 300 Illustrations, and Questions

:

Part I., The Principle of Work and its Applications; P?irt II.: Friction,

Lubrication of Bearings, &c. ; Different kinds of Gearing and their Appli-
cations to Workshop Tools, &c. Fifth Edition. 8s. 6d.
" FniLV MAINTAINS the reputation of the Author."—/>«»<. Engineer.

Vol. II.—Comprising Parts III. to VI., with over 800 pages, 371 Illus-

trations ; Motion and Energy, Theory of Structures or Graphic Statics

;

Strength and Elasticity of Materials ; Hydraulics and Hydraulic
Machinery. Fifth Edition. 12s. 6d.
"Well and lucidly written,"—The Engineer.

*»* Each ofthe above volumes is complete in itself, and sold separately.

PROFESSOR JAMIESON'S INTRODUCTORY MANUALS
Crown Svo, With Illustrations and Examination Papers.

STEAM AND THE STEAM-ENGINE
,
(Elementary

Manual of). For First-Year Students, formirg an Introduction to the
Author's larger Work. Eleventh Edition, Revised and Enlarged. 3/6.

" Should be in the hands of every engineering apprentice."

—

Practical Engineer.

MAGNETISM AND ELECTRICITY (Ppactical Elementary
Manual of). For First-Year Students. With Stud Inst.C. E. and B. of E.
Exam. Questions. Seventh Edition, Revised and Enlarged. 3/6.
" A THOROUGHLY TRUSTWORTHY Text-book. PRACTICAL and deal."—Nature.

APPLIED MECHANICS (Elementary Manual of).
For First-Year Students. With B. of E., C. and G. ; and Stud. Inst. C.E.
Questions. Seventh Edition, Revised and Greatly Enlarged. 3/6.
" I'he work has very high qualities, which may be condensed into the one word

' clear.'"—Science and Art.

A POCKET-BOOK of ELECTRICAL RULES and TABLES.
For the Use of Electricians and Engineers. By John Munro, C.E.,
and Prpf. Jamieson. Pocket Size. Leather, 8s. 6d. Eighteenth
Edition. [See p. 49.

WNDON: CHARLES GRIFFIN & C0„ LIMITED, EXETER STREET. STRAND.
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WORKS BY 1. J. MACQUORN RANKIME, LL.D., F.R.S.

Thopoughly Revised by W. J. MILrLAR, C.E.

A MANUAL OF APPLIED MECHANICS : Comprising the
Principles of Statics and Cinematics, and Theory of Structures,

Mechanism, and Machines. With Numerous Diagrams. Grown 8vo,

Cloth. Seventeenth Edition. 12s. 6d.

A MANUAL OF CIVIL ENGINEERING : Comprising Engin-
eering Surveys, Earthwork, Foundations, Masonry, Carpentry, Metal
"Work, Roads, Railways, Canals, Rivers, Waterworks, Harbours, &o.

With Numerous Tables and Illustrations. Crown 8vo, Cloth.

Twenty-Third Edition. 16s.

A MANUAL OF MACHINERY AND MILLWORK : Com-
prising the Geometry, Motions, Work, Strength, Construction, and

Objects of Machines, &o. With nearly 300 Illustrations. Crown
8vo, Cloth. Seventh Edition. 128. 6d.

A MANUAL OF THE STEAM-ENGINE AND OTHER
PRIME MOVERS. With « Section on Gas, Oil, and Aik
Engines, by Bryan Donkin, M.Inst.C.E. With Folding Plates

and Numerous Illustrations. Crown 8vo, Cloth. Sixteenth
Edition 12s. 6d.

USEFUL RULES AND TABLES : For Architects, Builders,

Engineers, Founders, Meohamcs, Shipbuilders, Surveyors, &o. With
Appendix for the use of Eleotrioal E.MOiNEERy. By Professor

Jamieson, M.Inst. J.E., M.I.E.E. Seventh Edition. lOa. 6d.

A MECHANICAL TEXT -BOOK: A Practical and Simple

Introduction to the Study of Mechanics. By Professor Rankine

and E. F. Bamber, C.E. With Numerous Illustrations. Crown

8vo, Cloth. Fifth Edition. 9s.

•,* The "MeohakiOAL Tbxt-Book" wm desigwd by ProtosBor Bahkihi: mi nn Iste-

DUGTiON to the abovt Series of Mamtali.

MISCELLANEOUS SCIENTIFIC PAPERS. Part I. Tempera-

ture, Elasticity, and Expansi n of Vapours, Liquids, and Solids.

Part II Energy and its Iransfor (nations. Part III. Wave-Forms,

Propulsion of Vessels, &o. With Memoir by Professor Tait, M.A.

With fine Portrait on Steel, Plates, and Diagrams. Royal 8vo.

Cloth. 31s. 6d.

" No more enduring Memorial of Professor Rankine conH be devised than the pubUc.

don of these papers in an accessible form. . . . The OjUection is most valuable o._^

ac^unt ol the nature of his discoveries, and the beauty and completeness of his analysis,

—Architect.

lONDOM: CHAHLES GRIFflN & CO., LIMITED. EXETER STREET, STRAND.-
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Third Edition, Thoroughly Revised and Enlarged. With 60 Plates and
Numerous Illustrations. Handsome Cloth. 34s.

HYDRAULIC POWER
AND

HYDRAULIC MACHINERY.
BY

HENRY ROBINSON, M. Inst. C.E., F.G.S.,

FELLOW OF king's COLLEGE, LONDON ; PROF. EMERITUS OF CIVIL ENGINEERING,
king's college, etc., etc

Contents —Discharge through Orifices.—Flow of Water through Pipes.—Accumulators.
—Presses and Lifts.— Hoists.—Rams.—Hydraulic Engines.—Pumping Engines.—Capstans.
— Traversers. — Jacks. — Weighing Machines. — Riveters and Shop Tools, — Punching,
Shearing, and Flanging Machines.—Cranes.— Coal Discharging Machines,— Drills and
Cutters.—Pile Drivers, Excavators, &c.—Hydraulic Machinery applied to Bridges^ Dock
Gates, Wheels and Turbines.—Shields. — Various Systems and Power Installations —
Meters, &c.—Index.

"The standard work on the application of water power."

—

Cassier^s Magazine.

Second Bdittoiif Greatly Enlarged. With Frontispiece, several

PlateBt and over 250 Illvstrationa, 21«. net,

THE PRINCIPLES AND CONSTRUCTION OF

PUMPING MACHINERY
(STEAM AND WATER PRESSURE).

With Practical Illustrations of Enoines and Pumps applied to Hinino,

Town Wateb Supply, Dkainage of Lands, &c., also Economy
and Efficiency Trials of Pumping Machinery.

Bt heney davey,
Member of the InBUtntion of GiTil Engineers, Member of the Institution of

Mechanical Engineers, F.&.S., &o.

OoNTENTS —Early History of Pumping En^es—Steam Pumpmg Engines—
Pumps and Pump Valves—General Principles of N'on-Botative Pumping
Engines—The Cornish Engine, Simple and Compound—Types of Mining
Engines—Pit Work—Shaft Sinking—Hydraulic Transmission of Power in
Mines—Electric Transmission of Power—Valve Gears of Pumping Engines
— Water Pressure Pumping Engines — Water Works En^es— Pumping
Engine Economy and Trials of Pumping Machinery—CentnfUgal and other
Low-Lift Pumps—Hydraulic Rams, Pumping Mains, &c.

—

Index.

''By the *one English Engineer who probably knows more abont Pumping Machinery
than ANY OTHBB.' ... A VOLUUE BBOOBDING THB BESULTS OF LONG BXPBBIBNCE AND
STUDY."

—

The Engineer.
"Undoubtedly THE BEST and most pbactigai. treatise on Pumping Machinery that has

TET BEEN PUBLISHED."

—

JUiniTig Journal.
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At Press. In Large 8vo. Handsome Cloth. Profusely Illustrated.

In Two Volumes, Each Complete in itself, and
Sold Sepakately.

THE DESIGN
AND

CONSTRUCTION OF SHIPS.
By JOHN HARVARD BILES, M.Inst.N.A.,

Professor of Naval Architecture in Glasgow UniTersity.

Contents of Volume I.

—

Part I. : General Considerations.—^Methods of Determin-

ation of the Volume and Centre of Gravity of a known Solid. — Graphic Rules for

Integration.—Volumes and Centre of Gravity of Volumes.—Delineation and Descriptive

Geometry of a Ship's Form.—Description and Instances of Ship's Forms.—Description
of Types of Ships. Part II. : Calculation of Displacement, Centre of Buoyancy and
Areas.-Metacentres.—Trim.—CoefBcients and Standardising.—Kesults of Ship Calcula-

tipns.—Instruments Used to Determine Areas, Moments, and Moments of Inertia of

Plane Curves.—Cargo Capacities,—Effects on Draught, Trim, and Initial Stability due

to Flooding Compartments.— Tonnage.— Freeboard.— Launching.— Application of the

Integraph to Ship Calculations.—Straining due to Unequal Longitudinal Distribution

of Weight and Buoyancy.—Consideration of Stresses in a Girder.—Application of Stress

Formula to the Section of a Ship.—Shearing Forces and Bending Moments on a Ship

amongst Waves.—Stresses on the Structure when Inclined to the Upright or to the

Line of Advance of the Waves.— Distribution of Pressure on the Keel Blocks of a

Vessel in Dry Dock.—Consideration of Compression in Ship Structure.

BY PROFESSOR BILES.

LECTURES ON THE MARINE STEAM TURBINE.

With 131 Illustrations. Price 6s. net.

See page 28.

Royal Suo, Handsome Cloth. With numerous Illustrations and Tables. 25s.

THE STABILITY OP SHIPS.
BY

SIR EDWARD J. REED, K.C.B., F.R.S., M.P.,

CHIGBT 0» THK IMPBRIAL ORDERS OF ST. STANILAUS Of RUSSIA.; FRANCIS JOSKPB OF

AUSTRIA ; MBDJIDIE OF TURKEY ; AMD RISING SUN OF JAPAN ;
VICF-

PRESIDKNT OF THE INSTITUTION OF NAVAL ARCHITECTS.

" Sir Edward Reed's Stability of Ships ' is invaluable. The Naval Architect

will find brought together and ready to his hand, a mass of information wbich he would othtt-

•wise have to Mek in an almost endless variety of publications, and some of which he wmild

possibly not be able to obtain at all elsewhere."—iS<«i»«fey.

ILOMDON : CHARLES GRIFFIN & CO.. LIMITED, EXETER STREET. STRAND,
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WORKS BY THOMAS WALTOTf,
NATAL ARCHITECT.

Third Edition. Illustrated with Plates, Numerous Diagrams, and

Figures in the Text. i8s. net.

STE EL SHI PS;
THEIR OOlSrSTRUCTION AND MAIITTENANCB.

A Manual for Shipbuilders, Ship Superintendents, Students,

and Marine Engineers.

By THOMAS WALTON, Naval Architect,
AUTHOR OF *' KNOW YOUR OWN SHIP."

Contents.—I. Manufacture of Cast Iron, Wrought Iron, and Steel.—Com-
position of Iron and Steel, Quality, Strength, Tests, &c. II. Classification of

Steel Ships. III. Considerations in making choice of Type of Vessel.—Framing
of Ships. rV. Strains experienced by Shiijs.—Methods of Computing and
Ooiuparing Strengths of Ships. V. Construction of Ships.—Alternative Modes
of Construction.—Types of Vessels.—Turret, Self Trimming, and Trunk
Steamers, &o.—Rivets and Kivetting, Workmanship. VI. Pumping Arrange-
ments. VII. Maintenance.—Prevention of Deterioration in the Hulls of

Ships.—Cement, Faint, &c.—Index. *

" So thorough and well written is every chapter in the book that it is dltScult to select

any of them as being worthy of ezeeptional praise. Altogether, the work is excellent, and
will prove of great value to those for whom It is intended.*'— 7%e Engineer.

In Large 8vo. Handsome Cloth. With 2.S6 Pages, 40 Folding and 9 other

Plates, and very numerous Illustrations in the Text. 7s. 6d. net.

PRESENT-DAY SHIPBUILDING.
For Shipyard Students, Ships' Officers, and Engineers.

Bt THOS. WALTON.
Gbneral Contents.—Classification.—Materials used in Shipbuilding.

—

Alternative Modes of Construction.—Details of Construction.—Framing,
Plating, Rivetting, Stem Frames, Twin-Screw Arrangements, Water
Ballast Arrangements, Loading and Discharging Gear, &c.—Types of

Vessels, including Atlantic Liners, Cargo Steamers, Oil carrying Steamers,
Turret and other .Self Trimming Steamers, &;c.—Index.

NunE Edition, Illustrated. Handsome Cloth, CrcyumSvo. 7a.6d.

The Chapters on Tonnage and Freeboard have been brought thoroughly
up to date, and embody the latest (1906) Board of Trade Regulations on
these subjects.

KNOW YOUR OWN SHIP.
By THOMAS WALTON, Naval Architect.

Specially arranged to suit the requirements of Ships' Officers, Shipowners
Superintendents, Draughtsmen, Engineers, and Others,

CONTEHTS. — Displacement and Deadweight. — Moments. — Buoyancy. — Strain. —
Structure.— Stability.— Rolling.— Ballasting.— Loading.—Shifting Cargoes.—Effect of
Admission of Water into Ship.—^Trim Tonnage.^fVeeboard (Load-line),—ValculationB,

—

Set of Calculations from Actual Drawings.—Ibhex.
" The work iB of the highest value, and all who go down to the sea In ships should make them-

selves acquainted with it.'—Shipping World (on the new edition),

lONDOM: CHARLES GRIFFIN & CO., LIMITED, EXETER STREET. STRAND.
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GRIFFIN'S NAUTICAL SERIES.
Edited by EDW. BLACKMORE,

Master Mariner, First Class Irinity House Certificate, Assoc. Inst. N.A.

;

Ahd Weitten, mainly, by Sailom for Sailoks.

"This admieablu series. "—J'airpZay. "A tert dsbful series."—jro(ttr«.

"Every Ship should have the whole Series as a Rhfbeenob Library. Hand-
eOHELY BonND, OIEAKLY PRIHTBD and 1LLU8TRATE1D."—iJBerpooZ Jtmrn. of Commerce.

The British MePeantile Marine: An Historical Sketch of its Rise
and Development. By the Editor, Capt. Blaokmore. 3a. 6d.
" Captain Elackmore s splendid book . . . contains paragraphs on every point

of interest to the Merchant Marine. The 243 pages ol this book are THE MOST TALU.
ABLE to the sea captain that have ever been compiled."—KeroAant Service Bemew.

Elementary Seamanship. By D. Whson-Bakker, Master Mariner,

r.K.S.E., r.B.G.S. With numerous Plates, two in Colours, and Frontispiece.

Fourth Edition, Thoroughly Revised. With additional Illustrations. 6s.

"This ADMIRABLE MANUAL, by CAPT. WILSON BARKER, of the 'Worcester, seems

to us PERFECTLY DESIGNED."

—

AtJiencewm.

Know Your Own Ship : A Simple Explanation of the Stability, Con-

struction, Tonnage, and Freeboard of Ships. By THOS. Walton, Naval Architect.

Ninth Edition. 7s. 6d.
" Mb. Walton's book will be found very useful."-Tfte Engineer.

Navigation : Theoretical and Praetieal. By D. Wilson-Babkeb
and William Allinsham. Second Edition, Revised. Ss. 6d.
" Precisely the kincb of work required for the New Certificates of competency.

Candidates will find it invaluable."-i)«nd«e Advertiser.

Marine MeteorolOgry : For OflBcers of the Merchant Navy. By
WnJiIAM Allinsham, First Class Honours, Navigation, Science and Art Department.

With Illustrations and Maps, and facsirniUe reproduction of log page. 7a. 6d.

" Quite the BEST publication on this subject."

—

Shipping Gazette.

Latitude and Longitude : How to find them. By W. J. Millae,
C.B. Second Edition, Revised. 2s.

. ™ .

" Cannot but prove an acquisition to those studying Navigation."—JMunne Bngvneer.

Practical Mechanics : Applied to the requirements of the Sailor.

By Thos. MACKENZIE, Master Mariner, F.R.A.S. Second Edition, Revised. 3s. 6d.

" Well worth the money . . exoeedinoly helpful."—Sftijjptnsr Woru.

Trigonometry : For the Young Sailor, &c. By Rich. C. Book, of the

Thames Nautical Training College, H.M.S. " Worcester." THIRD Edition, Revised.

Price 3a. 6d. „ „ i , ,
"This eminently practical and reliable volume. —SelwolmoBter.

Practical Algebra. By Rich. C. Buck. Companion Volume to the

above, for Sailors and others. Second Edition, Revised. Price 3a. 6d.

"It is JUST the book for the young sailor mindful of progress."—JViHtticaJ Mogonn*.

The Legal Duties of Shipmasters. By Benedict Wm. Ginsbub^
M.A., Ii.D., of the Inner Temple and Northern Circuit; Bamster-at-Law. SECOND

Edition, Thoroughly Beviaed and Enlarged. Price 4s. 6d.
,

." INVALUABLE to masters. . . . We can fully recommend it —Shtppmg ifazette.

A Medical and Surgical Help for Shipmasters. Including First

Aid at Sea. By WM. Johnson Smith, F.B.C.S., Principal Medical Ofttoer, Seamen'a

Hospital, Greenwich. THIRD Edition, Thoroughly Revised. 6s.
" Sound, judicious, really helpful."—rAe Lancet.

LONDON: CHARLES GRIFFIN & CO., LIMITED, EXETER STREET, STRAND.
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GRIFFIN'S NAUTICAL SERIES.

Introductory VolvMie. Price Ss. 6d.

THE
British Mercantile Marine.

By EDWARD BLACKMORE,
MASTEK UARINBR; ASSOCIATE OF THB INSTITUTION OF NAVAL ARCHITBCTS;

MEMBER OF THE INSTITUTION OF ENGINEERS AND SHIPBUILDERS
IN SCOTLAND; EDITOR OF GRIFFIN'S "NAUTICAL SERIES."

General Contents.—Histokioai. : From Early Times to 1486—ProgresB
auder Henry VIII.—To Death of Mary—Durme Elizabeth's Reign- Up to
the Beign of William III.—The 18th and 19th Centuries—Institution ol
Examinations— Bise and Progress of Steam Propulsion— Development of
Free Trade—Shipping Legislation, 1862 to 1875—" Looksley Hall" Case—
ShiiHUasters' Societies-Loading of Ships—Shipping Legislation, 1884 to 1894—
Statistics of Shipping. Thb Pebsonnel : Shipowners—Officers—Mariners-
Duties and Present Position. Education: A Seaman's Education: what it

should be—Present Means of Education—Hints. DisciPLiNi; and Dttto—
Postscript—^The Serious Decrease in the Number of British Seamen, a Matter
demanding the Attention of the Kation.

*^ iNTBBBSTDTG and iHSTBUGTivz . . . may be read with FsoFrr and bhjoxuent,"-
fflasaow Herald,

''EviERT BBAHOH Of tbe Bnbjeot is dealt with in a way which showa that the writer
* knows the ropes' familiarly."—Sco£«7ian.

**ThiB AsmsABLE book , . , TBBua with useful iufovmatlon—Should be In the
hands of every Sailor."— JTMftrn Morning Nem.

Fourth Edition, Thoroughly Revised. With Additional
Illustrations. Price 6s.

ELEMENTARY SEAMANSHIP.
BT

D. WILSON-BARKER, Master Mariner; F.K.S.E., F.R,G.S.,&o., to.
TODHaBK BROTHER OF THB IKINITT HOITBE.

With Frontispiece, Numerous Plates (Two in Colours), and Illustrationi

in the Text.

General Contents.—The Building of a Ship; Parts of Hull, Masts,
&c.—Bopes, Knots, Splicing, &c. — Gear, Lead and Log, &c. — B%giDg,
Anchors— Sailmaking— The Sails, &c. — Handling of Boats under Sail —
Sisals and Signallii^—Bule of the Road—Keeping and Believing Watch

—

Points of Etiquette—Glossary of Sea Terms and Phrases—Index.

*«* The volume containB the hbw edleb of the boax>.

'* This admibable uahual, by Oapt. Wilson-Babbxb of the ^ Worcester,' seems to uft

PBBFBCTLT DESIGNED, and holds its place excellently in ' Gbiffib's Nautioal Sbbibs. '
.

Although intended for those who are to become OflBcers of the Merchant Navy, It will be
round useful by all TACHTSUBN.".~^fAma9ufn.

**'" For complete List of (^eivfot's Nautical Series, see p. 39.

LONDON : CHARLES CRIFFIN & CO., LIMITED. EXETER STREET, STRAND.
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GRIFFIN'S NAUTICAL SERIES.

Second Edition, Bevised cmd Illiistrated, Price Ss. 6d.

By DAVID WILSON-BARKER, R.N.R., F.R.S.E., &o., &o.,

AND

WILLIAM ALLINGHAM,
FIBST-OLASS HOHOUBS, NATiaATION, SOIENOS AND ABT DEPAKTMENT.

Wlitb filumerous illustrations and Bsamination (Questions.

. General Contents.—Defimtiona—Latitude and Longitude—Instrumeuta
of Navigation—Correction of Courses—Plane Sailing—Traverse Sailing—Day's
Work— Parallel Sailing— Middle Latitude SaUing— Mercator's Chart—
Mercator Sailing—Current Sailing—Position by Bearings—Great Circle Sailing

—The Tides—Questions—Appendiz : Compass Error—Numerous Useful Hints
&;c.—Index.

'* Fbbgiselt the kind of work required for the New Certificates of competency in grades
Irom Second Uate to extra Master. . . , Candidates will find it iitvaltjable. "—i)unde/
Adeertiter.

"A OAFTFAL XJTTLB BOOK . . . Specially adapted to the New ExaminatioiiB. The
Authors are Oapt. Wn.aoiT-BAKKBB (Captaia-SuperintendeHt of the Nautical College. H.M.S.
' Worcester,' who has had great experience in the highest problems of Navigatioa), and
Ub. Aujnghau, a well-known writer on the Science of Navigation and Nautical Astronomy.

"

—Shipping World,

Handsome Cloth. Fully Illustrated. Price 7s. 6d.

MARINE METEOROLOGY,
FOR OFFICERS OF THE MERCHANT NAVY.

By WILLIAM ALLINGHAM,
Joint Author of "Navigation, Theoretical and Practical."

With numerous Plates, Maps, Diagrams, and Illustrations, and a facsimile

Reproduction of a Page from an actual Meteorological Log-Book.

STJMMAEY OP CONTENTS.
Introductory.—Instruments Used at Sea for Meteorological Purposes.—Meteoro-

logical Log-Books.—Atmospheric Pressure.—Air Temperatures.—Sea Temperatures.—
Winds.—Wind force Scales.—History of the Law of Storms.—Hurricanes, Seasons, and
Storm Tracks.-Solution of the Cyclone Problem.—Ocean Currenta.-Iceberga.—Syn-
chronous Charts.-Dew, Mists, Togs, and Haze.—Clouds.—Kain, Snow, and Hail.—
Mirage, Kainbowa, Coronas, Halos, and Meteors.—Lightning, Corposants, and Auroras.—
QDESTIONS.—APPBKDIX.—Index.

" Quite the best publication, and. certainly the most interestihg, on this subject ever

presented to Nautical men."Shipping Gazette.

*,* For Complete List of Gkifhn's Natttioal Series, see p. 39,
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GRIFFIN'S XAUTICAL SERIES.
Sboono Edition, Revised. With Numerous Illustrations. Price 3s. 6d.

Practical Mechanics:
Applied to the Requirements of the Sailor.

By THOS. MACKENZIE,
Master Mariner, F.R.A.S,

Gemubai, Contbnts.—Resolution and Composition of Forces—Work done
by Machines and Living Agents—The Mechanical Powers: The Lever;
Derricks as Bent Levers—The Wheel and Axle : Windlass ; Ship's Capstan

;

Crab Winch—Tackles : the "Old Man"—The Inclined Plane; the Screw—
The Centre of Gravity of a Ship and Cargo— Relative Strength of Hope :

Steel Wire, Manilla, Hemp, Coir—Derricks and Shears—Calculation of the
CioBB-breaking Strain of Fir Spar—Centre of EfEort of Sails—Hydrostatics:
the Diving-bell ; Stability of Floating Bodies ; the Ship's Pump, &c.
" This excellent book . . . contains a large amount of information.

"

—Nature.
" Well worth the money . . . will be found bxobedinoli helpitol."—

Shhiping World.
"No Ships' Oitioees' bookcase will henceforth be complete without

Caitain Mackenzie's ' Peaotical Mbchanios.' Notwithstanding my many
years' experience at sea, it has told me Jwvt much more there is to acquire."—
(Letter to the Publishers from a Master Mariner).
" I must express my thanks to you for the labour and care you have taken

in 'Pbaotioal Mechanics.' . . . It la a life's experience. . .

What an amount we frecjuently see wasted by rigging purchases without reason
and accidents to spars, &c., &o. ! 'Practical Mbchanios' wonLD save all
this."—(Letter to the Author from another Master Mariner).

WORKS BY RICHARD C. BUCK,
of the Thames Nautical Training OoUege, H.M.S, ' WorceBter,'

A Manual of Trig^onometry

:

Vl/ith Diagrams, Examples, and Exercises. Price 3s. 6cl.

Third Edition, Revised and Corrected.

*,* Mr. Buck's Text-Book has been specially pebpaked with a view
to the New Examinations of the Board of Trade, in which Trigonometry
is an obligatory subject.

"This BuiNBHTLY PBAOTicAL and RELIABLE VOLUME."

—

Schoolmaster.

A Manual of Algebra.
Designed to meet the Requirements of Sailors and others.

Second Edition, Revised. Price 3s. 6d.

\* These elementary works on algebra, and trigonometry are written specially for

those who will have little opportnnity of consulting a Teacher. They are books for ^^self-

HKLP." All but the simplest explanations have, therefore, been avoided, and answers te
the Exercises are given. Any person may readily, by carefnl stndy, become master of thel*
oontentB, and thus lay the foundation for a further mathematical course, if desired. It Is

hoped that to the younger Officers of pur Mercantile Marine they will be found decidedly
serviceable. The Examples and Exercises are taken from the Examination Papers set for

the Cadets of the "Worcester."
"Olearly arranged, and well got up. . , A first-rate Elementary Algebra.''—

Nautical Meigatine.

\* For complete List of Griffim's Nautioal Series, see p. 39.
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GRIFFIN'S NAUTICAL SERIES.
Second Edition, Thoroughly Revised and Extended. In Crown 8vb.

Handsome Cloth. Price 4s. 6d.

THE LEGAL DUTIES OF SHIPMASTERS.
BY

BENEDICT WM. GIN8BURG, M.A., LL.D. (Cantab.),
Of the Inner Temple and Northern Circuit ; Barrister-at^Law.

General Contents.—The Qualiflcatiou for the Position of Shipmaster—The Con-
tract with the Shipowner—The Master's Duty in respect of the Crew : Engagement
Apprentices ; Discipline ; Provisions, Accommodation, and Medical Comforts ; Payment
of Wages and Discliarge-The Master's Duty in respect of the Passengers—The Master's
Financial Besponsibilities—The Master's Duty in respect of the Cargo—The Master's
Duty in Case of Casualty—The Master's Duty to certain Public Authorities—The
Master's Duty in relation to Pilots, Signals, Flags, and Light Dues—The Master's Duty
upon Arrival at the Port of Discharge—Appendices relative to certain Legal Matters

;

aaaxd, of Trade Certificates, Dietary Scales, Stowage of Grain Cargoes, Load Line £egula-
tlons, Life-saving Appliances, Carriage of Cattle at Sea, <iEc., &c.—Copious Index.
" No intelligent Master should fall to add this to his list 6f necessary books. A few lines

of It may savb a lawtee's fhb, besides endless wosby. ''—Ziwrpooi Joismal of Commera.
^* Sensible, plainly written, in oleab and non-teohnical language, and will be found of

uoOH SEBVICE by the Shipmaster,"

—

British Trade Reoieto.

Second Edition, Revised. With Diagrams. Price 2s.

Latitude and Longitude:
^o'Sir to FindL tliexn.

By W. J. MILLAE, C.E.,
Late Secretary to the Inst, of Engineers and Shipbuilders in ScotUmd.

" CoNClSBLY and cleablt wbitten , , , cannot but prove an acquisition

to those studying Navigation."

—

Marine Engineer.
" Young Seamen will find it handy and useful, simple and oleak."— The

FIRST AID AT SEA.
Third Edition, Revised. With Coloured Plates and Numerous Illustra-

tions, and comprising the latest Regulations Respecting the Carriage
of Medical Stores on Board Ship. Price 63.

A MEDICAL AND SURGICAL HELP
FOR SHIPMASTERS AND OFFICERS

IN THE MERCHANT NAVY.
By WM. JOHNSON SMITH, F.KO.S.,

Principal Medical Officer, Seamen's Hospital, Greenwich.

%* The attention of all interested in our Merchant Navy, is requested to thw exceedingljp

useful and valuable work, It is needless to say that it' is the outcome of many years
PBAOTiOAi. EXFERiEHCE amougst Seamcu.

*' SOCHD, JUDICIOUS, BEALLY HBLPBTIL."

—

The Loncet.

*^* For Complete List of Gbiffin's Nautical Series, see p. 39.
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GRIFFIX'S yAUTICAL SERIES.
Ninth Edition. Revised, viith Chapters cm Trim, Buoyancy, and Calcula-
tions. Numerous Illustrations. Handsome Cloth, Crown 8vo. Price 7s, 6d.

KNOW YOUR OWN SHIP.
By THOMAS WALTON, Naval Architect.

Specially arranged to suit the requirements of Ships' Officers^ Shipowners,
Superintendents, Draughtsmen, Engineers, and Others,

This work explains, in a eimple manner, Buch important subjects as:—Displacement.—
Deadweight.—Tonnp-Re.—Freeboard. —Moments.—Buoyancy.— Strain.—Siructure,—Stab-
ility.—Boiling,—Ballasting. —Loading.— Shifting Cargoes.— Admission of Water.—Sail
Area.—&c.

"The little book will be found bxcbbdingly hansy by most officers and officials connected
with shipping. . . . Mr. "Walton's work will obtain lasting bdccbss, because of its unique
fitness for those for whom it baa been written."—jSAippinff World.

BY THE SAME AUTHOR.

Steel Sbips: Their Construction and Maintenance.
(See page 38.)

Sixteenth Edition, TliorougMy Revised. La/rge &vo. Cloth.

pp. i-xxiv + 712. With 250 Illustrations', reduced from
Working Drawings, and 8 Plates, 21«. net,

A MANUAL OF
MARINE ENGINEERING:
COMPRISING THE DESIGNING, CONSTRUCTION, AND

WORKING OP MARINE MACHINERY.
By A. E. SEATON, M.I.C.E., M.I.Meeh.E,. M.I,N.A.

Gbnbeai. Contents. — Part I.—Principles of Marine Propulsion.
Pabt II.— Principles of Steam Engineering. Part III.— Details of
Marine Engines : Design and Calculations for Cylinders, Pistons, Valves,
Expansion Valves, &o. Pakt IV.— Propellers. Part V. — Boilers.
Part VI.—Miscellaneous.
" The Student, Draughtsman, and Engineer will find this work the host taluable

HiHDBOOK of Reference on the Marine Engine now in existence."

—

Marine Engivttr.

Ninth Edition, Thoroughly Revised. Focket-Size, Leather. Ss. 6d.

A POCKET-BOOK OF

MARINE ENGINEERING RULES AND TABLES,
FOR THE USE OP

Marine Engineers, Naval Architects, Designers, Draughtsmen,
Superintendents and Others.

By a. E. SEATON, M.I.O.E., M.I.Meeh.E., M.I.N.A..
AND

H. M. ROUNTHWAITE, M.LMech.E., M.I.N.A
' The best book of its kind, and the infonziatioD is both up-to-date and reliable."

—
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WORKS BY PROF. ROBERT H. SMITH, Assoe.M.I.C.E.,
M.I.Meeh.E., M.LE1.E., M.lMln.E., Whit. Sch., M.Ord.MelJl

THE CALCULUS FOR ENGINEERS
AND PHYSICISTS,

Applied to Teehnieal Problems.
WITH EXTENSIVE

CLASSIFIED EEFEBENCE LIST OF INTEGBALS.
*

By PROP. ROBERT H. SMITH.
ASSISTED BY

R. F. MUIRHEAD, M.A., B.Sc,
Formerly Olark Fellow of G-lasgow Umveraity, and Lecturer on MatbemB.tlcB ai

Maaon College.

In Grown 8vo, extra, with Diagrams and Folding-Plate. 8s. 6d.
" Paoj. E. H. Smi!ph*b hook will be serviceable in rendering a hard road as bast as peactic-

ABLE for the non-mathematical Student and Engineer."—^f^ncEum.
" Interesting diagrams, with practical illustrations of actual occun-ence, are to be found here

ia abundance. Thb tebt complbtb classified bspjsbbncb table will prove very useful hi
saving the time of those who want an integral in a hurry."—TTie Bngvnser.

MEASUREMENT CONVERSIONS
(English and French)

:

. 43 GRAPHIC TABLES OR DIAGRAMS, ON 28 PLATES.
showing at a glance the Mutual Conversion of MEAstrsKMENTS

in DiPFEEENT Units

Cf Lengths, Areas, Volumes, Weights, Stresses, Densities, Quantities
of Work, Horse Powers, Temperatures, &o.

For the use of Engineers, Surveyors, Architects, and Contractors.

In 4to, Boards. 7s. 6d.

*,* Prof. Smith's Conveksion-Tables form the most unique and com-
prehensive collection ever placed before the profession. By their use much
time and labour will be saved, and the chances of error in calculation

diminished. It is believed that henceforth no Engineer's Office will be
oonsidered complete without them.

Pocket Size, Leather Limp, with Gilt Edges and Rounded Corners, printed on Special
Thin Paper, with Illustrations, pp. i-xii + 834. Price 18s. net.

(THE NEW " NYSTROM ")

THE MECHANICAL ENGINEER'S REFERENCE BOOK
A Handbook of Tables, Formidm and Methods for Engineers,

Stiidents and Draughtsmen.

By henry HARRISON SUPLEB, B.Sc, M.E.
" We feel sure it will be of great service to mechanical engineers."—Bn^i»i«en»i^.
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Second Edition. In Large Svo, Handsome Cloth. 16s.

CHEMISTRY FOR ENGINEERS.
BY

BERTRAM BLOUNT, and A. G. BLOXAM,
F.I.C, F.C.B., A.I.C.E. F.I.O.. P.C.8.

GENERiL CONTENTS.—Introduction—OhemlBtry of the Chief MaterlalB
of Construction—Sources of Energy—ChemlBtrjr of Steam-raising— Chemis-
try of Lubrication and Lubricants-Metallurgical Frocesses used in the
Winning and Manufacture of Metals.

"The authors have snccBSDKD beyond all expectation, and hare produced a work which
iAonld give fresh poweb to the Encrlneer and Mannfactarer."

—

The Times.

By the same Authors, "Chemistey fok Mandfactubkes," see p. 71
General Cataiogue.

THE ELEMENTS OF CHEMICAL ENGINEERING. By
J. anossMANN, M.A., Ph.D., F.I.C. With a Preface by Sir

William Ramsay, K.O.B., F.R.S. In Handsome Cloth. With
nearly 50 Illustrations. 3a. 6d. net. [See page 70 General Catalogue.

In Demy Quarto. With Diagrams and Worked Problems.
2s. 6d. net.

PROPORTIONAL SET SQUARES
APPLIED TO GEOMETRICAL PROBLEMS.

By Lieut. -Col. THOMAS ENGLISH, Late Royal Engineers.

Works by WALTER R. BROWNE , M.A., M.lNST.C.E.

THE STUDENT'S MECHANICS:
An Introduction to the Study of Force and Motion.

With Diagrams. Crown 8vo. Cloth, 4s. 6d.

" Clear In style and practical in method, 'The Student's Mechanics' is cordially to be
recommended from all points of view."

—

Atkemeum,

FOUNDATIONS OF MECHANICS.
Papers reprinted from the Engineer, In Crown 8vo, is.

Demy 8vo, with Numerous Illustrations, 9s.

FUEL AND WATER:
A Manual for Users of Steam and Water.

Bv Prof. FRANZ SCHWACKHOFER of Vienna, and
WALTER R. BROWNE, M.A., C.E.

Gbhbbal Contents.—Heat and Combustion—Fuel, Varieties of—Firing Arrange ments

:

Furnace, Flues, Chimney— The Boiler, Choice of— Varieties— Feed-water Heaters

—

Steam Pipes—Water: Composition, Purification—Prevention of Scale, &c., &c.
'* The Section on Heat is one of the best and most lucid ever written."

—

Engineer.
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CHEMISTRY AND TECHNOLOGY. 47

Second Edition, Revised and Enlarged.
With Tables, Illustrations in the Text, and 37 Lithographic Plates. Medium

8vo. Handsome Cloth. 30s.

SEWAGE DISPOSAL WORKS:
A Guide to the Construction of Works for the Prevention of the

Pollution by Sewage of Rivers and Estuaries.

By W. SANTO CRIMP, M.Inst.C.K, F.G.S.,
Late Assistant-Engineer, London County CounciL

"Probably the most complbtb and best treatise on the subject which has appeared
in our Imafrasi^e.'—Edmiurgh MedicalJournal.

Beautifully Ilhtatrated, with Nwmerous Plates, Diagrams, and
Figures in the Text. Sla. net.

TRADES' WASTE:
ITS TREATMENT AND UTILISATION.

A Handbook fop Borough Engineers, Surveyors, Architects, and Analysts.

By W. NAYLOR, F.O.S., A.M.Inst.C.E.,
Ohief Inspector of Rivers, Kibble Joint Committee.

Contents.—I. Introduction.—II. Chemical Engineering.—III.—Wool De-greasing
and Grease Recovery.—IV. Textile Industries; Calico Bleaching and Dyeing.—V. Dyeing
and Calico-Printing.—VI. Tanning and Fellmongery.—VII. Brewery and Distillery
Waste.-VIII. Paper Mill Refuse.-IX. General Trades' Waste.—INDEX.

'^ There is probably no persoa in England to-day better fitted to deal rationally with
such a subject,"—5n'(isA Sanitarian.

In Handsome Cloth. With 59 Illustrations. 6a. net,

A Manual for the Use of Manufacturers, Inspectors, Medical Officers of
Health, Engineers, and Others.

By WILLIAM NICHOLSON,
Chief Smoke Inspector to the Sheffield Corporation.

Contents.— Introduction.— General Legislation against the Smoke Nuisance.—
Local Legislation.—Foreign Laws.—Smoke Abatement.—Smoke from Boilers, ib'ninaces,

and Kilns.— Private Dwelling-House Smoke.— Chimneys and their Construction.

—

Smoke Preventers and Fuel Savers. — Waste Gases from Metallurgical Furnaces. —
Summary and Conclusions.-INDEX.
" We welcome such an adequate statement on an important subject."— BriiisA

Medical Jov/nml.

Second Edition. In Medium 8vo. Thoroughly Revised and Re-Written.

15s, net.

CALCAREOUS CEMENTS:
THEIR NATURE, PREPARATION, AND USES.

By gilbert R. REDGRAVE, Assoc. Inst. C.E.,
Assistant Secretary for Technology, Board of Education, South Kensington,

And CHARLES SPACKMAN, F.C.S.
•'We can thoroughly recommend it as a first-class investment."

—

Practical Engineer.
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ELECTRICAL ENGINEERING.
Second Edition, Revised. In Large Soo. Handsome Cloth. Profusely

Illustrated with Plates, Diagrams, and Figures. 24s. net.

CENTRAL ELECTRICAL STATIONS:
Their Design, Organisation, and Management.

By CHAS. H. WORDINGHAM, A.K.C., M.Inst.C.E., M.Inst.Mech.E.,
Late Memb. of Council InstE.E., and Electrical Engineer to the City of Manchester ;

Electrical Engineer-in-Chief to the Admiralty.

ABRIDaED CONTENTS.
Introductory.—Central Station Work as a Profession.—As an Investment.—The Estab-

lishment of a Central Station —Systems of Supply.—Site.—Architecture.—Plant.—Boilers —
Systems of Draught and Waste Heat Economy.—Coal Handling, Weighing, and Storing.-

The Transmission of Steam.— Generators.— Condensing Ai}pUances. — Switching Gear,
Instruments, ajid Connections.—Distributing Mains.—Insulation, Resistance, and Cost.

—

Distributing Networks.— Service Mains and Feeders.— Testing Mains.— Meters and
Appliances.—Standardising and Testing Laboratory.—Seconda^ Batteries.—Street Light-
ing.— Cost.— General Organisation — Mains Department. — Installation Department.—
Standardising Department.— Drawing Office — Clerical Department— The Consumer.

—

Routine and Main Laying.

—

Index.

"One of the most valuable contributions to Central Station literature we have had
for some time."—E^ctricitj/.

In Large 8vo. Handsome Cloth. Profusely Illustrated. I2s. 6d. net.

ELECTRICITY CONTROL.
A Treatise on Eleetrie Switchgear and Systems of Electric Transmission.

By LEONARD ANDREWS.
Associate Member of the Institution of Civil Engineers, Member of the Institution of

Electrical Engineers, &c
General Principles of Switchgear Design.—Constructional Details —Circuit Breakers or

Arc Interrupting Devices.—Automatically Operated Circuit- Breakers.—Alternating Reverse
Current Devices.— Arrangement of 'Bus Bars, and Apparatus for Parallel Running.

—

General Arrangement of Controlling Apparatus for High Tension Systems. — General
Arrangement of Controlling Apparatus for Low Tension Systems.—Examples of Complete
Installations.—Long Distance Transmission Schemes.

*

' Not often does the specialist have presented to him so satisfactory a book as this. . . ,

We recommend it without hesitation to Central Station Engineers, and, in fact, to anyone
interested in the subject."

—

Power,

Large 8vo, Cloth, with 334 Pages and 307 Illustrations. 16a. net.

ELECTRICITY METERS,
By HENEY G. SOLOMON, A.M.Inst.E.E.

Contents.— Introductory.— General Principles of Continuous - Current
Meters.—Continuous-Current Quantity Meters.—Continuous-Energy Motor
Meters.—Different Types.—Special Purposes, i.e., Battery Meters, Switchboard
Meters, Tramcar Meters.—General Principles of Single- and Polyphase Induc-
tion Meters.— Single-phase Induction Meters.— Polyphase Meters.— Tarifi
Systems.—Prepayment Meters.—Tariff and Hour Meters.—Some Mechanical
Features in Meter Design.—Testing Meters.

—

Index.
" An earDest and Bnccesaful attempt to deal compreliensively with modern metbods of

nieaanring cmrent or power in electrical installations."—.BJ^^ine«riny,
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In Large Crown 8vo. Handsome Cloth. Fully Illustrated.

TELEGRAPHIC SYSTEMS,
AND OTHER NOTES.

A Handbook of the Principles on which Telegraphic Practice la Based.

By ARTHUR CROTCH,
Of the Engineer-in-Chief's Department, G.P.O.

Contents.— Batteries, Primary and Secondary. — Morse Systems: Duplex, DlpJex,
Quadruplex, Multiplex.—Type-Printing Systems : Huglies, Bandot, Murray.—Test and
Battery Boxes. — Concentrators. — Intercommunication Systems. — Central Battery
Arrangements. — Repeaters, Hughes, Fast Speed, Duplex and Single, Forked: Quad-
ruplex, Forked Quadruplex, Split Quadruplex, and Side Relayed. — Submarine Tele-
graphy.— Wireless Telegraphy. — Testing: Wheatstone Bridge, Tangent Galvanometer,
Morning Test, &c.—Protective Devices, &c.

In Large 8vo. Profusely Illustrated. 8b. 6d. net.

WIRELESS TELEGRAPHY.
Bf GUSTAVE EICHHORN, Ph.D.

Contents.—Oscillations.—Closed and Open Oscillation Systems.—Coupled
Systems.—The Coupling Compensating the Aerial Wire.—The Receiver.—
Comparative Measurement in the Sender.—Theoretical Results and Calculations
in respect of Sender and Receiver.—Close- and Loose-Coupled Sender and
Receiver.—Formulae.—The Ondameter.—Modem Apparatus and Methods of
Working.—Conclusion.—Bibliography.

—

Index.
"Well written . . . and combines with a good deal of description a careful

investigation of the fundamental theoretical phenomena."—JVostwre.

Eighteenth Edition. Leather, Pocket Size, with 764 pages. 8s. 6d.

A POCKET-BOOK OF
ELECTRICAL RULES & TABLES

FOR THE USE OF ELECTRICIANS AND ENGINEERS.
By JOHN MUNRO, C.E., & Prof. JAMIESON, M.Inst.C.E., F.R.S.B.

"Wonderfully Perfect. . . . Worthy of the highest commendation we can
give it."

—

Eiectrician.

CmHTIX'S ELECTRICAIi FRICE-BOOE : For Electrical, CivU,
Marine, and Borough Engineers, Local Authorities, Architects, Railway
Contractors, &c. Edited by H. J. Dowsing. SecondEdition. 8s. 6d..

ELKCTRIC SMELTING AND REFINING. By Dr. W. Boechebs-
and W. G. MoMrLLAN. [See page 67 General Catalogue.

ELECTRO - METALLURGY, A Treatise on. By Walter G.
McMillan, F.I.C., F.C.S. [See page 67 General Catalogue.

ELECTRICAL PRACTICE IN COLLIERIES. By D. Bubns, M.B.,
M. Inst. M.S. [See page 56 General CataZogue.
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Third Edition, Revised, Enlarged, and Re-issued. Price 6s. net.

A SHORT MANUAL OF

INORGANIC CHEMISTRY.
By a. DUPRE, Ph.D., F.R.S.,

And WILSON HAKE, Ph.D., F.I.O., F.C.S.,
Of the Westminster Hospital Medical School

**An bxamplb of the advantages of the Systematic Treatment of a Sdence
over the fragmentary style so generally followed. Bv a long way the best of the small

Manuals for Stadcnts.^^—Analyst.

In Handsome Cloth. With nearly 50 Illustrations. 3s, 6d. net.

THE ELEMENTS OF CHEMICAL ENGINEERINC.
By J. GROSSMANN, M.A., Ph.D., F.I.C.

WITH A PREFACE BT

Sib WILLIAM RAMSAY, K.C.B., F.R.S.
CONTBNTS.—The Beaker and its Technical Equivalents.—Distilling Masks, Liebig's

Condensers.—Fractionating Tubes and their Technical Equivalents.-The Air-Bath and
its Technical Equivalents.—The Blowpipe and prucible and their Technical Equivalents.
—The Steam Boiler and other Sources of Power.—General Biemarks on the Application
of Heat in Chemical Engineering.—The Funnel and its Technical Equivalents.—The
Mortar and its Technical Equivalents.—Measuring Instnunents and their Technical
Equivalents.—Materials Used in Chemical Engineering and their Mode of Application;

—

Technical Kesearch and the Designing of Plant.—Conclusion.—Chemicals and Materials.
-Index.
"Excellent. . . Every student of chemistry attending a technical course should

obtain a copy. '

—

ChemiccU News,

LABORATORY HANDBOOKS BT A. HUMBOLDT SEXTON,
FrofesBor of Metallurgy in the Glasgow and West of Scotland Technical OoUege.

OUTLINES OF QUANTITATIVE ANALYSIS.
FOR TBB USB OP STUDENTS.

With IlluBtrations. Fipth Edition. Crown 8to, Cloth, 3s.

" A ooMPAOT I.ABOBATOKY GUIDE for beginners was wanted, and the want has
been wbll suppubd. ... A good and useful book."

—

Lancet.

OUTLINES OF QUALITATIVE ANALYSIS.
FOR TEE USE OF STUDENTS.

With Illustrations. Fourth Edition, Revised. Crown 8to, Cloth, 3s, 6d.

" The work of a thorooghl; practical chemist,"

—

BrM$h MedieaZ JownuU.
" Compiled vrith great care, and will supply a want,"

—

Jowmal of EimcaMon.

ELEMENTARY METALLURGY:
Including the Author's Practical Laboratory Course.

[See p. 66 OemeraZ Catalogue.
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Griffin's Chemical and Technological Publications.

Inorganic Chemistry,
Analysis, .

Chemical Engineering',
Chemistry,

.

Foods and Poisons, .

Tables for Chemists,
Dairy Chemistry, &e..
Milk
Flesh Foods,
Practical Sanitation,
Sanitary Engineering,
Lessons on Sanitation,
Technical Mycology,
Soil Bacteria, .

Ferments and Toxines,
Brewing, .

Trades' Waste, .

Smoke Abatement, .

Cements, .

Water Supply, .

Road Making, .

Gas Manufacture,
Acetylene,

.

Fire Risks,
Petroleum,

Leather,
Oils, Soaps, Candles,
Lubrication & Lubricants,
India Rubber, .

Painters' Colours, Oils, &c..
Painters' Laboratory Guide,
Painting and Decorating,
Dyeing,
Dictionary of Dyes,
The Synthetic DyestufFs,.

Spinning, . . . •

Textile Printing,
Textile Fibres of Commerce,
Dyeing and Cleaning,
Bleaching, Calico- Printing,

OENSBAL CATAIOGIFE PAOB
Profs. Dupbi^ and Hake, 70
Prof. Humboldt Sexton, 70

46

46, 71
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79
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77

79

74,

De. J. Grossmann,
Blount and Bloxam,
A. Wtntbe Bltth,
Prof. Oastell-Evans,
H. D. Richmond,
E. E. WlLLOUGHBY,
0. A. Mitchell,
Dr. G. Reid,
E. Wood, .

J. W. Harrison,
Lafar and Salter,
J. Clark, .

C. Oppenheimer,
Dr. W. J. Stkbs,
W. Nayloe,
Wm. Nicholson,
G. R. Redgrave,
R. E. Middleton,
Thos. Aitkbn, .

W. Atkinson Butterfield, 77
Leeds and Butterfield, 77
Dr. Schwartz, . . 77
SiE Boveeton Redwood, 61

Thomson and Redwood, 61

Mitchell and Hepworth, 81

R. W. SiNDALL, . . ,81

Thos. Lambeet, . . 81
R. S. Teotman, . . 81

Weight & Mitchell, 71

Aechbutt and Deeley, 32
Dr. Gael O. Webee, . 81

G. H. Hurst, . . 80

„ . . 80
W. J.Pbaece, . . 80
Knboht and Rawson, . 82

Rawson and Gardner, 82
Gain and Thorpe, . 82
H. R. Caetee, . . 83
Seymour Rothwell, . 83
W. I. Hannan, . . 83
G. H. Hurst, . . 84

Geo. Duerr, . , 84
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Griffin's Geological, Prospecting, Mining, and
IMetailurgical Publications,

Geology, Stratigraphieal,

„ Pfaetieal Aids,
„ Open Air Studies,

.

Mining Geology, .

Prospecting for Minerals,
Food Supply,

.

Ore and Stone Mining, .

Elements of Mining,
Coal Mining, .

Practical Coal Mining,.
Elementary „
Elect. Colliery Practice,

Mine-Surveying,
Mine Air, Investigation of.
Mining Law,
Blasting and Explosives,
Testing Explosives,

.

Shaft Sinking, .

Mine Accounts,
Mining Engineers' Pkt.-Bk.,
Petroleum,....
A Handbook on Petroleum,
Oil Fuel, ....
Mineral Oil Testing,

Metallurgical Analysis, .

Microscopic Analysis,
Metallurgy (General),

„ (Elementary),
Getting Gold,

.

Cyanide Process, .

Cyaniding,
Electric Smelting,

.

Electro-Metallurgy,
Assaying,
Metallurgical Analysis,

Metallurgy (Introduction to),
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Lead and Silver, „
Iron, Metallurgy of,
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General Foundry Practice,
Iron-Founding,

.
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SEITEBAL CATALOaCE PAGE
R. Ethbridge, F.R.S.,

.

Prof. Gbentille Oolb,
52

52
85

James Park, F.G.S., . . 56
S. Herbert Cox, A.R.S.M., . 53
RoBT. Bruce, ... 53
Sir 0. Le Neve Foster, . 54

>, „ 54
H. W. Hughes, F.G.S., . 65

G. L. Kerr, M.Inst.M.E., . 55

„ „ . 56
D. Burns, .... 56
Bennett H. Brough, A.R.S.M., 56
Foster and Haldane, . 64
C. J. Alpori), ... 57
0. Guttmann, A.M.I.C.E., . 58
BiCHEL AND LaRSEN, . . 68
RiEMER AND Brough, . . 58
Prof. J. G. Lawn, . . 57
E. R. Field, M.Inst.M.M., . 57

Sib Boveeton Redwood, . 61

Thomson and Redwood, . 61

Sidney H. North, . . 61

J. Hicks, .... 61

MACLEOD AND WaLKER, . 60
F. Osmond & J. E. Stead, F.R.S., 60
Phillips and Bauerman, . 60
Prof. Humboldt Sexton, . 66
J. C. F. Johnson, F.G.S., . 59
Jambs Park, F.G.S., . . 69
Julian and Smart, . . 59
Borchbrs and M°Millan, . 67
W. G. McMillan, F.I.C., . 67

J. J. & C. Bebinger, , 66
J. J. Morgan, F.C.S., . . 66
Sir "W. Robebts-Austen, K.O.B., 63
Dr. Kibke Rose, A.R.S.M., 63
H. F. Collins, A.R.S.M., . 64
Thos. Turner, A.R.S.M., . 66
F. W. Harboed, ... 65
m''"wllliam and longmuir, 68
Prof. Turner, ... 68
Dr. Max Bauer, . . 68

LONDON: CHARLES GRIFFIN & CO., LIMITED, EXETER STREET. STRAND.










